AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value

Andhra Pradesh BIEAP AP Inter 1st Year Economics Study Material 5th Lesson Theory of Value Textbook Questions and Answers.

AP Inter 1st Year Economics Study Material 5th Lesson Theory of Value

Essay Questions

Question 1.
Explain the classification of Markets. [March 18, 17]
Answer:
Edwards defined “Market, as a mechanism by which buyers and sellers are brought together”. Hence market means where selling and buying transactions take place. The classification of markets is based on three factors.

  1. On the basis of area
  2. On the basis of time
  3. On the basis of competition.

I. On the basis of area: According to the area, markets can be of three types.

  1. Local market : When a commodity is sold at particular locality. It is called a local market. Ex : Vegetables, flowers, fruits etc.
  2. National market : When a commodity is demanded and supplied throughout the country is called national market. Ex : Wheat, rice etc.
  3. International market: When a commodity is demanded and supplied all over the world is called international market. Ex : Gold, silver etc.-

II. On the basis of time : It can be further classified into three types.

  1. Market period or very short period : In this period where producer cannot make any changes in supply of a commodity. Here supply remains constant. Ex : Perishable goods. .
  2. Short period : In this period supply can be change to some extent by changing the variable factors of production.
  3. Long period : In this period-supply can be adjusted in according change in demand. In long run all factors will become variable.

III. On the basis of competition : This can be classified into two types.

  1. Perfect market: A perfect market is one in which the number of buyers and sellers is very large, all engaged in buying and selling a homogeneous products without any restrictions.
  2. Imperfect market: In this market, competition is imperfect among the buyers and sellers. These markets are divided into
    1. Monopoly
    2. Duopoly
    3. Oligopoly
    4. Monopolistic competition.

AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value

Question 2.
Elucidate the features of perfect competition.
Answer:
Perfect competitive market is one in which the number of buyers and sellers is very large, all engaged in buying and selling a homogeneous products without any restrictions.
The following are the features of perfect competition :
1) Large number of buyers and sellers : Under perfect competition the number of buyers and sellers are large. The share of each seller and buyer in total supply or total demand is small. So no buyer and seller cannot influence the price. The price is determine only demand and supply. Thus the firm is price taker.

2) Homogeneous product: The commodities produced by all the firm of an industry are homogeneous or identical. The cross elasticity of products of sellers is infinite. As a result, single price will rule in the industry.

3) Free entry and exit: In this competition there is a freedom of free entry and exit. If existing firms are getting profits. New firms enter into the market. But when a firm getting losses, it would leave to the market.

4) Perfect mobility of factors of production : Under perfect competition the factors of production are freely mobile between the firms. This is useful for free entry and exits of firms.

5) Absence of transport cost: There are no transport cost. Due to this, price of the commodity will be the same throughout the market.

6) Perfect knowledge of the economy : All the buyers and sellers have full information regarding the prevailing and future prices and availability of the commodity. Information regarding market conditions is availability of commodity.

Question 3.
Describe Price determination in the imperfect competition.
Answer:
Monopoly is one of the market in the imperfect competition. The word Mono’ means single and Poly means seller. Thus monopoly means single seller market.
In the words of Bilas “Monopoly is represented by a market situation in which there is a single seller of a product for which there are no close substitutes, this single seller is unaffected by and does not affect, the prices and outputs of other products sold in the economy”. Monopoly exists under the following conditions.

  1. There is a single seller of product.
  2. There are no close substitutes.
  3. Strong barriers to entry into the industry exist.

Features of monopoly :

  1. There is no single seller in the market.
  2. No close substitutes.
  3. There is no difference between firm and industry.
  4. The monopolist either fix the price or output.

AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value

Price determination : Under monopoly the monopolist has complete control over the supply of the product. He is price maker who can set the price to attain maximum profit. But he cannot do both things simultaneously. Either he can fix the price and leave the output to be determined by consumer demand at a particular price. Or he can fix the output to be produced and leave the price to be determined by the consumer demand for his product. This can be shown in the diagram.
AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value 1
In the above diagram on ‘OX’ axis measures output and OY axis measures cost. AR is Average Revenue curve, AC is Average Cost curve. In the above diagram at E point where MC = MR at that point the monopolist determine the output. Price is determine where this output line touches the AR line. In the above diagram for producing OQ quantity cost of production is OCBQ and revenue is OPAQ.
Profit = Revenue – Cost
= PACB shaded area is profit under monopoly.

Short Answer Questions

Question 1.
What are the main features of perfect competition ?
Answer:
Perfect competitive market is one in which the number of buyers and sellers is very large, all engaged in buying and selling a homogeneous products without any restrictions.
The following are the features of perfect competition :
1) Large number of buyers and sellers : Under perfect competition the number of buyers and sellers are large. The share of each seller and buyer in total supply or total demand is small. So no buyer and seller cannot influence the price. The price is determine only demand and supply. Thus the firm is price taker.

2) Homogeneous product: The commodities produced by all the firm of an industry are homogeneous or identical. The cross elasticity of products of sellers is infinite. As a result, single price will rule in the industry.

3) Free entry and exit: In this competition there is a freedom of free entry and exit. If existing firms are getting profits. New firms enter into the market. But when a firm getting losses, it would leave to the market.

4) Perfect mobility of factors of production : Under perfect competition the factors of production are freely mobile between the firms. This is useful for free entry and exits of firms.

5) Absence of transport cost: There are no transport cost. Due to this, price of the commodity will be the same throughout the market.

6) Perfect knowledge of the economy : All the buyers and sellers have full information regarding the prevailing and future prices and availability of the commodity. Information regarding market conditions is availability of commodity.

Question 2.
What is meant by price discrimination ? Explain various methods of price discrimination.
Answer:
Price discrimination refers to the practice of a monopolist charging different prices for different customers of. the same product.
In the words of Joan Robinson “The act of selling the same article, produced under single control at different prices to different buyers is known as price discrimination”. Price discrimination is of three types. 1. Personal 2. Local 3. Use or trade discrimination.

  1. Personal discrimination : When a seller charges different prices from different persons.
    Ex : A book is sold ₹ 15/- to one person and other person at discount rate of ?
  2. Local discrimination : When a seller charges different prices from people of different localities or places.
    Ex : Dumping.
  3. Use discrimination : When different prices of commodity are charged according to the uses to which the commodity is put is known discrimination is according to use.
    Ex : Electricity is sold at a cheaper rate for uses of domestic purposes than for industrial purposes.

AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value

Question 3.
Define Oligopoly.
Answer:
The term ‘Oligopoly’ is derived from two Greek word “Oligoi” meaning a few and “Pollein” means to sell. Oligopoly refers to a market situation in which the number of sellers dealing in a homogeneous or differentiated product is small. It is called competition among the few. The main features of oligopoly are the following.

  1. Few sellers of the product.
  2. There is interdependence in the determination of price.
  3. Presence of monopoly power.
  4. There is existence of price rigidity.
  5. There is excessive selling cost or advertisement cost.

Question 4.
Compare Perfect competition and Monopoly.
Answer:
Perfect competition

  1. There is large number of sellers.
  2. All products are homogeneous.
  3. There is freedom of free entry and exists.
  4. There is difference between industry and firm.
  5. Industry determines the price and firm receives the price.
  6. There is universal price.
  7. The AR, MR curves are parallel to ‘X, axis.

Monopoly

  1. There is only one seller.
  2. No close substitutes.
  3. There is no freedom of free entry and exists.
  4. Industry and firm both are same.
  5. Firm alone determine the price.
  6. Price discrimination is possible.
  7. The AR, MR curves are different and slopes downs from left to right.

Additional Questions

Question 5.
Define Monopolistic competition. Explain the important characteristics of Monopolistic competition.
Answer:
It is a market with many sellers for a product but the products are different in certain respects. It is mid way of monopoly and perfect competition. Prof. E.H. Chamberlin and Mrs. Joan Robinson pioneered this market analysis.
Characteristics of Monopolistic competition :

  1. Relatively small number of firms : The number of firms in this market are less than that of perfect competition. No one should not control the output in the market as a result of high competition.
  2. Product differentiation : One of the features of monopolistic competition is product
    differentiation. It take the form of brand names, trade marks etc. It cross elasticity of demand is very high.
  3. Entry and exit: Entry into the industry is unrestricted. New firms are able to commence production of very close substitutes for the existing brands of the product.
  4. Selling cost: Advertisement or sales promotion technique is the important feature of Monopolitic competition. Such costs are called selling costs.
  5. More Elastic Demand : Under this competition the demand curve slopes downwards from left to the right. It is highly elastic.

AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value

Question 6.
Explain the price determination under perfect competition ?
Answer:
Perfect competition is a competition in which the number of buyers and sellers is very large. All enged in buying and selling a homogeneous without any restrictions.

Under this competition there are large no. of by buyers and sellers no buyer is.a seller can’t influence market price all products are homogeneous there is a freedom of free entry and exit. There is a perfect mobility of factors are production. There is no transport cost these are the main features are perfect competition.

Price determination:
Under perfect competition sellers and buyers can’t decide the price industry decides the price of the good in the supply and demand determined the price these can shown in the following table.
AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value 2
In this competition where demand supply both are equal at that point price and output determine the table changes in price always lead to a change in supply and demand as price increases there is a fall in the quantity demanded. The relation between price and demand is negative. The relation between price and supply is positive. It can be observe the table price 1 ₹ market demand 60 and supply is 20. When price increases 5 ₹ supply increases’ 60 and demand decreases 20. When the price is 3 ₹ the demand supply are equal that is 40 these price called equilibrium price. This process is explain with help of the diagram.
AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value 3
In the diagram ‘OX’ axis shown demand and supply OY’ axis represented price. DD demand curve, ‘SS’ is supply curve. In the diagram the demand curve and supply curve intersect at point E. Where the price is ‘OP’ and output is ‘OQ’.

Very Short Answer Questions

Question 1.
Market
Answer:
Market is place where commodities are brought and sold and where buyers and sellers meet. Communication facilities help us today to purchase and sell without sell without going to the market. All the activities take place is now called as market.

AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value

Question 2.
Local Market
Answer:
A product is said to have local market, when buyers and sellers of the product carry on the business in a particular locality. These goods are highly perishable cannot to take to distant places. They cannot even stored for a longer time.
Ex : Vegetables, milk, fruits etc.

Question 3.
National Market
Answer:
A National Market is said to exist when a commodity is demanded and supplies all over our country.
Ex : Rice, wheat, sugar etc. .

Question 4.
Monopoly
Answer:
Mono means single, Poly means seller. In this market single seller and there is no close substitutes. The monopolist is a price maker.

Question 5.
Monopolistic Competitions
Answer:
It is a market where several firms produce same commodity with small differences is called monopolistic competition. In this market producers to produce close substitute goods.
Ex : Soaps, cosmetics etc.

Question 6.
Oligopoly
Answer:
A market with a small number of producer is called oligopoly. The product may be homogeneous or may be differences. This market exists in automobiles, electricals etc.

AP Inter 1st Year Economics Study Material Chapter 5 Theory of Value

Question 7.
Duopoly [march 16]
Answer:
When there are only two sellers of a product, there exist -duopoly. Each seller under duopoly must consider the other firms reactions to any changes that he make in price or output. They make decisions either independently or together.

Question 8.
Equilibrium Price
Answer:
Equilibrium price is that price where demand and supply are equal in the market.

Question 9.
Price discrimination [March 18, 17, 16]
Answer:
Monopolist will charge different prices for the same commodity or service in the market. This is known as discriminating monopoly or price discrimination.

Question 10.
Selling Costs [March 18, 17]
Answer:
An important feature of monopolistic market is every firm makes expenditure to sell more output. Advertisements through newspapers, journals, electronic media etc., these methods are used to attract more consumers by each firm.

Additional Question

Question 11.
Perfect competition
Answer:
In this market large number of buyers and sellers who promote competition. In this market goods are homogeneous. There is no transport fares and publicity costs. So price is uniform of any market.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Andhra Pradesh BIEAP AP Inter 1st Year Economics Study Material 4th Lesson Theory of Production Textbook Questions and Answers.

AP Inter 1st Year Economics Study Material 4th Lesson Theory of Production

Essay Questions

Question 1.
Explain the law of variable proportions. [March 18, 17]
Answer:
The law of variable proportions has been developed by the 19th-century economists David Ricardo and Marshall. The law is associated with the names of these two economists. The law states that by increasing one variable factor and keeping other factors constant, how to change the level of output, total output first increases at an increasing rate, then at a diminishing rate and later decreases. Hence this law is also known as the “Law of Diminishing returns”.

Marshall stated in the following words.

“An increase in capital and labour applied in the cultivation of land causes, in general, less than proportionate increase in the amount of produce raised, unless it happens to coincide with an improvement in the arts of agriculture”.
Assumptions :

  1. The state of technology remain constant.
  2. The analysis relates to short period.
  3. The law assumes labour in homogeneous.
  4. Input prices remain unchanged.

Explanation of the Law :
Suppose a farmer has ‘4’ acres of land he wants to increase output by increasing the number of labourers, keeping other factors constant. The changes in total production, average product and marginal product can be observed in the following table.
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 1
In the above table total product refers to the total output produced per unit of time by all the labourers employed.

Average product refers to the product per unit of labour marginal product refers to additional product obtained by employing an additional labour.
In the above table there are three stages of production.

1st stage i.e., increasing returns at 2 units total output increases average product increases and marginal product reaches maximum.
2nd stage i.e., diminishing returns from 3rd unit onwards TP increases diminishing rate and reaches maximum, MP becomes zero, AP continuously decreases.
3rd stage i.e., negative returns from 8th unit TP decreases AP declines and MP becomes negative.
This can be explained in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 2
In the diagram on ‘OX’, axis shown units labourer and OY’ axis show TP, MP, and AP. 1st stage TP, AP increases MP is maximum. In the 2nd stage TP maximum, AP MP is zero. At 3rd stage TP declines, AP also declines, MP becomes negative.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 2.
Explain the law of returns to scale.
Answer:
The law of returns to scale relate to long run production function. In the long run it is possible to alter the quantities of all the factors of production. If all factors of production are increased in given proportion the total output has to increase in the same proportion. Ex : The amounts of all the factors are doubled, the total output has to be doubled increasing all factors in the same proportion is increasing the scale of operation. When all inputs are changed in a given proportion, then the output is changed in the same proportion. We have constant returns to scale and finally arises diminishing returns. Hence as a result of change in the scale of production, total product increases at increasing rate, then at a constant rate and finally at a diminishing rate.
Assumptions :

  1. All inputs are variable.
  2. It assumes that state of technology remain the same. The returns to scale can be shown in the following table.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 3
The above table reveals the three patterns of returns to scale. In the 1th place, when the scale is expanded upto 3 units, the returns are increasing. Later and upto 4th units, it remains constant and finally from 5th on words the returns go on diminishing.
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 4
In the diagram on ‘OX’ axis shown scale of production, on OY’ axis shown total product. RR1 represents increasing returns R1S – Constant returns; SS1 represents diminishing returns.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 3.
Distinguish between internal and external economies.
Answer:
Economies of large scale production can be grouped into two types.

  1. Internal economies
  2. External economies.

1. Internal Economies:
Internal economies are those which arise from the expansion of the plant, size or from its own growth. These are enjoyed by that firm only.
“Internal economies are those which are open to a single factory or a single firm independently of the action of other firms”. – Cairncross
i) Technological Economies : The firm may be running many productive establishments. As the size of the productive establishments increase, some mechanical advantages may be obtained. Economies can be obtained from linking process to another process i.e. paper making and pulp making can be combined. It also used superior techniques and increased specialization.

ii) Managerial Economies : Managerial economies arises from specialisation of management and mechanisation of managerial functions. For a large size firm it becomes possible for the management to divide itself into specialised departments under specialised personnel. This increases efficiency of management at all levels. Large firms have the opportunity to use advanced techniques of communication, computers etc. All these things help in saving of time and improve the efficiency of the management.

iii) Marketing Economies : The large firm can buy raw materials cheaply, because it buys in bulk. It can secure special concession rates from transport agencies. The product can be advertise better. It will be able to sell better.

iv) Financial Economies : A large firm can arise funds more easily and cheaply a small one. It can borrow from bankers upon better security.

v) Risk bearing Economies : A large firm incurs unrisk and it can also reduce risks. It can spread risks in different ways. It can undertake diversifications of output. It can buy raw materials from several firms.

vi) Labour Economies : A big firm employs a large number of workers. Each worker is given the kind of job he is fit for.

2. External Economies :
An external economy is one which is available to all the firms in an industry. External economies are available as an industry grows in size.

  1. Economies of Concentration : When a number pf firms producing an identical product are localised in one place, certain facilities become available to all. Ex : Cheap transport facility, availability of skilled labour etc.
  2. Economies of Information : When the number of firms in an industry increases collective action and co-operative effort becomes possible. Research work can be carried on jointly. Scientific journal can be published. There is possibility for exchange of ideas.
  3. Economies of Disintegration : When the number of firms increases, the firm may agree to specialise. They may divide among themselves the type of products of stages of production. Ex : Cotton industry.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 4.
Explain short-run cost structure of a Firm.
Answer:
Costs are divided into two categories i.e.,

  1. Short run cost curves
  2. Long run cost curves.

In short run by increasing only one factor i.e., (labour) and keeping other factor constant. The short run cost are again divided into two types.

  1. General costs
  2. Economic costs.
    1. General costs :

i) Money costs : Production is the outcome of the efforts of factors of production like land, labour, capital and organisation. So, rent to land, wage to labour, interest to capital and profits to entrepreneur has to paid in the form of money is called money cost.

ii) Real cost: Adam Smith regarded pains and sacrifices of labour as real cost. So it cannot be measured interms of money.

iii) Opportunity cost: Factors of production are scarce and have alternative uses. The opportunity cost of a factor is the benefit that is foregone from the next best alternative use.

2. Economic costs :
i) Fixed costs : The cost of production which remains constant even the production may be increase or decrease is known as fixed cost. The amount spent by the cost of plant and equipment, permanent staff are treated as fixed costs.

ii) Variable cost: The cost of production which is changing according to changes in the production is said to be variable cost. In the long period all costs are variable costs. It include price of raw materials, payment of fuel, excise taxes etc. Marshall called “Prime cost”.

iii) Average cost: Average cost means cost per units of output. If we divided total cost by the number of units produced, we will get average cost.
AC = \(\frac{\text { Total cost }}{\text { Output }}\)
iv) Marginal cost: Marginal cost is the additional cost of production producing one more unit.
MC = \(\frac{\Delta \mathrm{TC}}{\Delta \mathrm{Q}}\)
v) Total cost: Total cost is the sum of total fixed cost and total variable cost.
TC = FC + VC
The short term cost in relation to output are explained with the help of a table.
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 5
In the above table shows that as output is increased in the 1st column, fixed cost remains constant. Variable costs have changed as and when there are changes in output. To produce more output in the short period, more variable factors have to be employed. By adding FC & VC we get total cost different levels of output. AC falls output increases, reaches its minimum and then rises MC also change in the total cost associated with a change in output. This can be shown in the diagram.
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 6
In the above diagram on ‘OX’ axis taken by output and ‘OY taken by costs. The shapes of different cost curves explain the relationship between output and different costs. TFC is horizontal to ‘X’ axis. It indicates that increase in output has no effect on fixed cost. TVC on the other side increases along with level of output. TC curve rises as output increases.

Additional Questions

Question 1.
Explain Production function.
Answer:
Production function is technical concept. It explains the physical relationship between input and output at any period of time. It represents functional relationship between inputs and the amount of output produced.
According to Stigler “Production is the name given to the relationship between rates of inputs of productive services and the rate of output of product”.
The production function can be expressed mathematically as follows.
Gx = f (L, K, R, N, T)
Gx = Output
f = Functional relationship
L = Amount of Labour
K = Amount of Capital
R = Raw material
N = Natural resources or land
T = State of Technology.
Where Gx is dependent variable and is determined by the inputs used, whereas L, K, R, N, T are independent variables.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 2.
Explain Law of supply.
Answer:
The law of supply explains the functional relationship between price of a commodity and its quantity supplied. The law of supply can be stated as follows “Other things remaining the same, as the price of a commodity rises its supply is extended and as the price falls its supply is contracted”.

The law of supply can be explained with the help of supply schedule and supply curve.

Supply Schedule : Supply schedule explains various amounts of good that the seller offers for sale at different prices. It represents the functional relationship between price and quantities supplied. There is direct relationship between price and supply. This can be shown in the following schedule.
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 7
The above schedule high price i.e, ₹ 5.00 per unit 1000 units are supplied and at ₹ 1 per 200 units are supplied. It means high price indicate high supply and low price indicates low supply. So, it shows the direct relationship between price and supply.

Supply curve :
A supply curve can be drawn with the help of above supply schedule to explain the direct relationship between price and supply.
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 8
In the above diagram supply is shown on ‘OX’ axis and price is shown ‘OY axis. SS is supply curve. It slopes upwards from left to right. The slope of supply curve is always positive. Because there is direct relationship between the price and supply.’

Question 3.
Define Factors of production.
Answer:
Factors that help in the production process are called factors of production.
Ex : land, labour, capital and organization
1) Land : Land stands in economics for natural resources. There are nature given resources like soil, earth, water, rainfall, forests, mines, clijnate etc. All these come under land. Land is the productive equipment given by nature. The remuneration to land is called rent.

2) Labour : Labour is man’s effort. It may be physical or mental labour. Any service offered for a price is considered as labour in economics. All services rendered to produce scarce goods come under labour. The remuneration to labour is called wage.

3) Capital : Capital is man made production equipment. Factories, buildings, vehicles, rail-roads, roads, irrigation dam etc., come under capital. The remuneration to capital is interest.

4) Organisation or Entrepreneurship : The entrepreneur or businessmen brings together all the factors of production required for production. He bears the risk is doing so. He coordinates the functions of different factors. Profit is the remuneration for organisation or entrepreneurship.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 4.
Define land and explain the characteristics of land.
Answer:
Land stands in economics for natural resources. There are nature given resources like soil, earth, water, rainfall, forests, mines, climate etc., all these come under land. Land is the productive, equipment given by nature. The remuneration to land is called rent. Characteristics of land:

  1. Land is a free gift of nature.
  2. The supply of land is perfectly inelastic from the point of view of economy.
  3. Land cannot be shifted from one place to another place.
  4. It does not yield any result unless human effort’s are employed.

Question 5.
Define labour. Explain the characteristics of labour.
Answer:
Labour is man’s effort. It may be physical (or) mental labour. Any’service offered for a price is considered as labour in economics. The remuneration to labour is called wage. Characteristics of labour:

  1. Labour is inseparable from the labourer himself.
  2. Labour is highly ‘perishable’. It means labour lost cannot store his labour.
  3. Labour has a very weak bargaining power.
  4. Labour power differs from labourer to labourer of their skills.
  5. The supply curve of a labourer is backward bending.

Question 6.
What is supply ? What are the determinants of supply.
Answer:
The supply of a commodity means the total quantity of the commodity that sellers offer to sell at different prices from the stock of that commodity existing at any given time. The supply of commodity depends upon the following factors.
Determinants of supply :

  1. Price of the commodity: The supply of the commodity depends upon the price of that commodity. When price falls, supply falls and when price rises, supply also rises. Thus price and supply are directly related.
  2. Factor prices : The cost of production of a commodity depends upon the prices of various factors of production.
  3. Prices of related goods : The supply of the commodity depends upon the prices of related goods. If the price of a substitute good goes up, the producer will be induced to
  4. State of technology: Technological improvements determine supply of a commodity. Progress in technology leads to reduction in the cost of production which will increase supply.
  5. Government policy : Imposition of heavy taxes as a commodity discourages its production. Hence production decreases.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 7.
Explain the nature of revenue curves untier perfect competition.
Answer:
If competition is perfect in market, the market is known as perfectly competitive market. Due to the existing features the total demand and total supply pf a commodity interact to determine the price in the industry and individual firm. Hence, an individual seller or firm is a price taker but not a price maker in perfect competition, ‘therefore he can sell any quantity at the ruling price. Thus, the demand curve is parallel to X-axis. The nature of Average Revenue (AR) and Marginal Revenue (MR) and their relationship under perfect competition can be better understood from the following schedule.
Revenue Schedule :
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 9
The above table indicates that in perfect competition price remains the same irrespective of the number of units sold. Therefore, the total revenue increases at a constant rate. AR and MR are equal. There is no difference among price AR and MR. This can be reveals the following diagram.
AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production 10
In the diagram X-axis represents number of units (output) and Y-axis represents revenue. DP is demand curve.

In diagram, the Average Revenue curve (AR) is horizontal straight line parallel to the X-axis and Marginal Revenue Curve MR coincides with it. Because the seller can sell number of units given the price, the AR curve facing the seller is a horizontal line.

Very Short Answer Questions

Question 1.
Production function [March 18]
Answer:
The production function is the none for the relation between the physical inputs and the physical outputs of a film. Production of a firm, production function explains the functional relationship between inputs and outputs this can be as follows Gx = f (L, K, R, N, T).

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 2.
Law of supply [March 16]
Answer:
The law of supply explains the functional relationship between price of a commodity and its quantity supplied. The law of supply can be stated as follows. “Other things remaining the same, as the price of a commodity rises its supply is extended and as the price falls its supply is contracted”.

Question 3.
Factors of production
Answer:
Factors that help in the production process are called factors of production.
Ex : land, labour, capital and organization.

Question 4.
Average cost
Answer:
If we divided total cost, by the number of units produced. We will get average cost. Average cost means cost per unit of output.
AC = \(\frac{\mathrm{TC}}{\text { Output }}\)

Question 5.
Marginal cost
Answer:
Marginal cost is the additional cost of production producing one more unit in other words it is the addition made to total cost by producing one more unit of a commodity.
MC = \(\frac{\Delta \mathrm{TC}}{\Delta \mathrm{Q}}\)

Additional Questions

Question 6.
Production
Answer:
Production is the process that converts inputs into output in economies production includes services along with physical goods.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 7.
Short period
Answer:
Short period is a period in which a producer is unable to change factors of production to increase output. This relates to law of variable proportions.

Question 8.
Long period
Answer:
Long period is a period in which a producer is unable to change factors of production to increase output. This relates to returns to scale.

Question 9.
Average product
Answer:
It refers to the product per unit of labour it is Obtained by dividing total product by the number of labourers employed.
AP = \(\frac{\mathrm{TP}}{\mathrm{L}}\)

Question 10.
Marginal product
Answer:
It is the additional product by employing an additional labour.
MP = \(\frac{\Delta \mathrm{TP}}{\Delta \mathrm{L}}\)

Question 11.
Fixed factor
Answer:
Fixed factors are those costs which can’t be changed by the producer in the short period.
Ex : Buildings, Machinery etc.

Question 12.
Variable factors
Answer:
The factors of production which are possible to change in relation to a change in output is known as variable factors in the long run all factors of production are variable.
Ex : Labour, Raw materials.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 13.
Change in scale of production
Answer:
It refers that output will be increase by increasing inputs in the long period.

Question 14.
Internal economies
Answer:
It refers that when a firm expands output by increasing all inputs.

Question 15.
External economics
Answer:
It refers to one which is available to all the firms in an industry. External economies are available as an industry grows in size.

Question 16.
Supply
Answer:
The quantity of a commodity that a seller is prepared to sell at a particular price and at a particular time is known as supply. The supply curve slopes upwards from left to right.

Question 17.
Supply function
Answer:
It explains the functional relation between supply and the factors of production of a good.

Question 18.
Opportunity cost
Answer:
The opportunity cost of a factor is the benefit i.e, forgone from the next best alternative use.

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 19.
Fixed cost
Answer:
The cost of production which remains constant even the production may be increase (or) decrease is known as fixed cost.
Ex : Machinery, permanent staff salaries.

Question 20.
Variable cost
Answer:
The cost of production which is changed according to changes in the production is said to be variable cost. In the long period all costs are variable costs it include price of raw materials, wages of labour, power transport charges etc.

Question 21.
Total Revenue
Answer:
Total revenue of a producer depends on the price and the quantity of output sold in the market.
Total Revenue = Price × Quantity of output
TR = P × Q

Question 22.
Average Revenue
Answer:
Average revenue is the revenue per unit of output. Average revenue is obtained by dividing to revenue by the number of unit sold.
AR = \(\frac{\text { TR }}{\mathrm{Q}}\)

Question 23.
Marginal Revenue
Answer:
Marginal revenue is the additional revenue earned by selling one more unit of the product. In other words change in total revenue arising from the sale of an additional unit of output is called marginal revenue.
MR = \(\frac{\Delta \mathrm{TR}}{\Delta \mathrm{Q}}\)

AP Inter 1st Year Economics Study Material Chapter 4 Theory of Production

Question 24.
Total Cost
Answer:
Total cost can be obtained by adding total fixed costs and variable costs.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Andhra Pradesh BIEAP AP Inter 1st Year Economics Study Material 3rd Lesson Theory of Demand Textbook Questions and Answers.

AP Inter 1st Year Economics Study Material 3rd Lesson Theory of Demand

Essay Questions

Question 1.
Explain the Law of Demand and examine its Exceptions to it.
Answer:
Demand means a desire which is backed up by the ability to buy and the willingness to pay the price is called demand in Economics. Thus demand will be always to a price and time. Demand has the following features.

  1. The desire for the commodity
  2. Ability to buy the commodity
  3. Willing to pay the price of the commodity
  4. Demand is always at a price
  5. Demand is per unit of time i.e, per day, a week, etc.

Therefore the price demand may be expressed in the form of the small equation.
Dx = f(Px)
Price demand explains the relation between price and quantity demanded of a commodity. Price demand states that there is an inverse relationship between price and demand.

Law of demand : Marshall defines the law of demand as, “The amount demanded increases with a fall in price and diminishes with arise in price when other things remain the same”. So, the law of demand explains the inverse relationship between the price and quantity demanded of a commodity.

Demand schedule : It means a list of the quantities demanded at various prices in a given period of time in a market. An imaginary example given below.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 1
The table shows that as the price falls to ₹ 1/- the quantity demanded 50 units, when price ₹ 5/- he is buying 10 units. So, there is inverse relationship between price and demand. Price is low demand will be high and price is high demand will be low. We can illustrate the above schedule in a diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 2
In the above diagram on X-axis demand is shown and price is on Y-axis. DD is the ad curve. Demand curves slopes downward from left to right.
Assumptions :

  1. No change in the income of consumer
  2. The taste and preferences consumers remain same.
  3. The prices of related goods remain the same.
  4. New substitutes are not discovered.
  5. No expectation of future price changes.

Exceptions : In certain situations, more will be demanded at higher price and less will be demanded at a lower price. In such cases the demand curve slopes upward from left to right which is called an exceptional demand curve. This can be shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 3
In the diagram when price increases from OP to OP1, demand also increases from OQ to OQ1. This is opposite to law of demand.
1) Giffen’s Paradox: This was stated by Sir Robert Giffen. He observed that poor people will demand more of inferior goods, if their prices raise. Inferior goods are known as Giffen goods.
Ex : Ragee, Jowar etc. He pointed out that in case of the English workers, the law of demand does not apply to bread. Giffen noticed that workers spend a major portion of their income on bread and only small portion on meat.

2) Veblen Effect (Prestigious goods) : This exception was stated by Veblen. Costly goods like diamonds and precious stones are called prestige goods or veblen goods. Generally rich people purchase those goods for the sake of prestige. Hence rich people may buy more such goods when their prices rise.

3) Speculation : When the price of a commodity rises the group of speculators expect that it will rise still further. Therefore, they buy more of that commodity. If they expect that there is a fall in price, the demand may not expand.
Ex : Shares in the stock market.

4) Illusion : Some times, consumer develop to false idea that a high priced good will have a better quality instead of low priced good. If the price of such good falls, demand decreases, which is contrary to the law of demand.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 2.
What is Demand Function ? What are the factors that determine the demand for a good ? [March 16]
Answer:
The functional relationship between the demand for a commodity and its various determinants may be explained mathematically in terms of a demand function.
Dx = f(Px,P1, ………… Pn, Y, T)
Where Dx = Demand for good X;
Px = price of X;
P1 …. Pn = Prices of substitutes and complementaries
Y = Income,
T = Taste of the consumer.
Determinants of demand :

  1. Price of commodity: The demand for any good depends on its price, more will be demanded at lower price and vice-versa.
  2. Prices of substitutes and complementaries : Demand is influenced by changes in price of related goods either substitutes or complementary goods.
    Ex: Increase in the price of coffee leads an increase in the demand for tea in the case of substitutes positive relation and complementaries negative relationship between price and demand.
  3. Income of the consumer : Demand always changes with a change in the incomes of the people. When income increases the demand for several commodities increases and vice-versa.
  4. Population : A change in the size and composition of population will effect the demand for certain goods like food grains, clothes etc.
  5. Taste and preferences: A change in the taste and the fashions bring about a change in the demand for a commodity.
  6. Technological changes: Due to economic progress technological changes the quantity the quality of goods available to the consumers increase.
    Ex : Demand for cell phones reduced the demand for landline phones.
  7. Change in the weather : Demand for commodity may change due to change in a climatic condition.
    Ex : During summer demand for cool drinks, in winter demand for wollen clothes.
  8. State of business : During the period of prosperity demand for commodities will expand and during depression demand will contract.

Question 3.
Explain the Concept of Demand and various types of Demand.
Answer:
The concept of demand has immerse significance in economics. In general language demand means a desire but in economics the desire backed up by ability to buy and willingness to pay the price.
Types of demands :
The demand may be classified into 3 types.

  1. Price demand
  2. Income demand
  3. Cross demand

1) Price demand : Price demand explains the relation between price and quantity demanded by a commodity it shows the inverse relationship between price and demand when the other things like consumers income, taste etc., remains constant. It means the price falls demand extends and the price raises demand contracts. The price demand can be expressed Dx = f(Px).
whereDx = Demand for X commodity
Px = Price of X
F = Function.

2) Income demand: It explains the relationship between consumers income and various quantities of various levels of income assuming other factors like price of goods, related goods, taste etc; remain the same. It means if income increases quantity demand increases and vice versa. This can be shown in the following form.
Dx = F(Y)
Where Dx = demand of X good;
Y = income of consumer.

3) Cross demand: It refers to change in demand for a commodity as a result of change in prices of its related commodities when other factors remains constant. This can be shown
Dx = f(Py)
Dx = demand of X good;
Py = Price of Y commodity;
F = function
Related goods are 2 types,

  1. Substitutes : Goods which satisfy same want called substitutes.
    Ex : Coffee and tea. Here there is a positive relation between price and demand.
  2. Complementary goods : These goods which satisfy the same want jointly.
    Ex : Car and petrol, shoes and sockes etc; are complementary goods.
    Here there exists inverse relation between complementary goods.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 4.
Explain the three Forms of Demand with suitable diagrams.
Answer:
The concept of demand has great significance in economics. In general language demand means a desire but in economics the desire backed up by ability to buy and willingness to pay the price.
Types of demand : The demand may be classified into three types.

  1. Price demand
  2. Income demand
  3. Cross demand

1) Price demand : Price demand explains the relationship between price and quantity demanded of a commodity it shows the inverse relationship between price and demand when the other things like consumers income, taste etc., remains constant. It means the price falls demand extends and price raises demand contracts. The price demand can be expressed Dx = f(Px)
Price demand can be explained with the help of demand schedule.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 4
As price falls to ₹ 1/- the quantity demand is 50 units, when price of apple is ₹ 5/- he is buying 10 units. So, the table shows inverse relationship between price and demand. Price demand can be explained with the help of the demand curve.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 5
On OX axis shows demand, OY axis shows price. We can obtain the demand curve ‘DD’ by joining all the points A, B, C, D, E which represents various quantities of demand at various prices. ‘DD’ is demand curve. It slopes downwards from left to right. It shows the inverse relationship between price and demand.

2) Income demand: It explains the relationship between consumers income and various quantities of various levels of income assuming other factors like price of goods, related goods, taste etc; remain the same. It means if income increases quantity demand increases and vice versa. This can be shown in the following form.
Dx = f(Y)
The functional relationship between income and demand may be inverse or direct depending on the nature of the commodity. This can be shown in the following table.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 6
Superior goods : In case of superior goods quantity demanded will increase when there is an increase in the income of consumers.
In the diagram ‘X’ axis represents demand, OY axis represents income, YD represents the income demand curve. It showing positive slope whenever income increased from OY to OY1; the demand of superior or normal goods increases from OQ to OQ1.
This may happens in case of Veblen goods.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 7
Inferior goods : On the contrary quantity demanded of inferior goods decreases with the increase in incomes of consumers.
In the diagram on ‘OX’ axis measures demand and OY axis represents income of the consumer. When the consumer income increases from OY to OY1 the demand for a commodity decreases from OQ to OQ1 So the YD’ curve is negative sloping.

3) Cross demand: Cross demand refers to the relationship between any two goods which are either complementary to each other or substitute for each other. It explains the functional relationship between the price of one commodity and quantity demanded of another commodity is called cross demand.
Dx = f(Py)
Where Dx – demand for ‘X’ commodity
Py Price of Y’ commodity
f = function
Substitutes : The goods which satisfy the same want are called substitutes.
Ex : Tea and coffee; pepsi and coca-cola etc. In the case of substitutes, the demand curve has a positive slope.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 8
In the diagram ‘OX’ axis represents demand tea and OY axis represents price of coffee. Increase in the price of coffee from OY to OY2 leads to increase in the demand of tea from OQ to OQ2.

Complementaries : In case of complementary goods, with the increase in price of one commodity, the quantity demanded of another commodity falls.
Ex : Car and Petrol. Hence the demand curve of these goods slopes downward to the right.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 9
In the diagram if price of car decreases from OP to OP2 the quantity demand of petrol increases from OQ to OQ2. So cross demand i.e., CD curve is downward slopes.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 5.
Define the Concept of Elasticity of Demand and explain the concepts of price, income and cross elasticity of demand.
Answer:
The concept of elasticity demand was first introduced by Cournot and Mill. Later it was developed in a scientific manner by Marshall. Elasticity of demand means the degree of sensitiveness or responsiveness of demand to a change in its price.

According to Marshall “The elasticity of demand in a market is great or small according as the amount demanded increases much or little for a given fall in price”.

The concept of elasticity of demand explains how much or to what extent a change in any one of the independent variables leads to change in the dependent variable.
There are three kinds of elasticity of demand.

  1. Price elasticity of demand
  2. Income elasticity of demand
  3. Cross elasticity of demand

1) Price Elasticity of Demand : Alfred Marshall developed the concept of price elasticity of demand. Price elasticity of demand is generally defined as the degree of responsiveness or sensitiveness of demand for a commodity to the changes in its price. Thus price elasticity of demand is the ratio of percentage change in quantity demanded of a good and percentage change in its price. The following formula to measure price elasticity of demand.
Ep = \(\frac{\text { Percentage change in quantity demanded }}{\text { Percentage change in price }}\)
= \(\frac{\text { Change in quantity demanded }}{\text { Original quantity demanded }} \times \frac{\text { Original price }}{\text { Change in price }}\)
= \(\frac{\Delta \mathrm{q}}{\mathrm{q}} \times \frac{\mathrm{p}}{\Delta \mathrm{p}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{p}} \times \frac{\mathrm{p}}{\mathrm{q}}\)
where q = quantity;
p = price;
∆q = change in quantity demanded;
∆p = change in price.
There are five kinds of price elasticity of demand. They are :

  1. Perfectly Elastic demand (Ed = α)
  2. Perfectly Inelastic demand (Ed = 0)
  3. Unitary Elastic demand (Ed = 1)
  4. Relatively Elastic demand (Ed > 1)
  5. Relatively Inelastic demand (Ed < 1)

2) Income Elasticity of Demand : Income elasticity of demand shows the degree of responsiveness of quantity demanded of a commodity to a change in the income of the consumer, other things remain constant.
Ey = \(=\frac{\text { Percentage change in quantity demanded }}{\text { Percentage change inconsumer’s income }}\)
= \(=\frac{\text { Change in quantity demanded }}{\text { Original quantity demanded }} \times \frac{\text { Original income }}{\text { Change in income }}\)
= \(\frac{\Delta \mathrm{q}}{\mathrm{q}} \times \frac{\mathrm{y}}{\Delta \mathrm{y}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{y}} \times \frac{\mathrm{y}}{\mathrm{q}}\)
where q = Quantity;
y = income;
∆Q = change in quantity demanded;
∆y = change in income.
Income elasticity of demand will be positive in case of superior goods like milk and meat and negative in case of inferior goods like porridge and broken rice.

3) Cross Elasticity of Demand : Cross elasticity of demand refers to change in the quantity demanded of one good in response to change in the price of related good, other things remaining constant. There are certain goods whose demand depend not only to their price but also on the prices of related goods.
Ec = \(\frac{\text { Percentage change in quantity demanded of X }}{\text { Percentage change in the price of } Y}\)
Ec = \(\frac{\Delta \mathrm{Qx}}{\mathrm{Qx}} \div \frac{\Delta \mathrm{Py}}{\mathrm{Py}}=\frac{\Delta \mathrm{Qx}}{\mathrm{Qx}} \times \frac{\mathrm{Py}}{\Delta \mathrm{Py}}=\frac{\Delta \mathrm{Qx}}{\Delta \mathrm{Px}} \times \frac{\mathrm{Py}}{\mathrm{Px}}\)
Where Q(x) = Quantity demanded for X; P(y) = price of commodity (Y), ∆Q(x) = change in quantity demanded of X commodity, ∆P(y) = change in price of commodity Y.
Substitute goods like tea and coffee have positive cross elasticity demand where as complementary goods like shoes and socks have negative cross elasticity of demand.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 6.
What is Price Elasticity of Demand ? Explain the various types of Price Elasticity of Demand.
Answer:
Alfred Marshall developed the concept of price elasticity of demand. Price elasticity measures, other things remaining constant, change in the demanded of a good in response to a change in its price. Thus price elasticity of demand is the ratio of percentage change in quantity demanded of a good and percentage change in its price. Price elasticity can be written as stated below.
Ep = \(\frac{\text { Percentage change in quantity demanded }}{\text { Percentage change in price }}\)
= \(\frac{\text { Change in demand }}{\text { Original demand }} \times \frac{\text { Original price }}{\text { Change in price }}\)
= \(\frac{\Delta \mathrm{q}}{\mathrm{q}} \times \frac{\mathrm{p}}{\Delta \mathrm{p}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{p}} \times \frac{\mathrm{p}}{\mathrm{q}}\)
Where q = quantity; p = price; ∆q = change in demand; ∆p = change in price
Types of price elasticity of demand : Based on numerical value, price elasticity of demand can be five types.

  1. Perfectly Elastic demand (Ed = ∞)
  2. Perfectly Inelastic demand (Ed = 0)
  3. Unitary Elastic demand (Ed = 1)
  4. Relatively Elastic demand (Ed > 1)
  5. Relatively Inelastic demand (Ed < 1)

1) Perfectly Elastic demand : It is also known as “infinite elastic demand”. A small change in price leads to an infinite change in demand is called perfectly elastic demand. It is horizontal straight line to ‘X’ axis. The numerical value of perfectly elastic demand is infinite (Ed = ∞). It can be shown in the diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 10
In the diagram, Ed = \(\frac{\mathrm{OQQ}_1}{\mathrm{OQ}} \div \frac{\mathrm{O}}{\mathrm{OP}}\)
= \(\frac{\mathrm{QQ}_1}{\mathrm{OQ}} \times \frac{\mathrm{OP}}{\mathrm{O}}\) = ∞

2) Perfectly Inelastic demand: It is also known as “zero elastic demand”. In this case even a great rise ‘or fall in price does not lead to any change in quantity demanded is known as perfectly inelastic demand. The ‘demand curve will be vertical to the Y axis. The numerical value is ‘OE. This can be shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 10
In the diagram, Ed = \(\frac{\text { Zero }}{\mathrm{OQ}} \div \frac{\mathrm{PP}_1}{\mathrm{OP}}\) = 0
∴ Ed = 0

3) Unitary Elastic demand: The percentage change in price leads to same percentage change in demand is called unitary elastic demand. In this case the elasticity of demand is equal to one. The shape of demand curve is “Rectangular Hyperbola”. This can be shown in the following.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 12
In the diagram, Ed = OP1Q1 = OPQ
(or) OQ1 = PP1
∴ Ed = 1

4) Relatively Elastic demand: When a percentage change in price leads to more than percentage change in quantity demand is called relatively elastic demand. In this case the numerical value of Ed is greater than one (Ed > 1)
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 13
In the diagram, Ed = OQ1 > PP1
∴ Ed > 1

5) Relatively Inelastic demand : When the percentage change in price leads to a less than percentage change in quantity demand is called relatively inelastic demand. Here the numerical value is less than one (Ed < 1) . This can be shown to following diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 14
In the diagram, Ed = QQ1 < PP1
∴ Ed < 1

Question 7.
Explain the three methods of Measuring Price Elasticity of Demand.
Answer:
The concept of elasticity of demand is one of the original contributions of Dr.Marshall. The concepts of elasticity of demand clearly explains ‘how much’ demand increases due to a certain fall in price and ‘how much’ demand decreases due to certain rise in price.

According to Mrs. Joan Robinson, “The elasticity of demand at any price or at any output is the proportional change of amount purchased in response to a small change in price, divided by the proportional change in price”.

Methods of measurements of Price Elasticity of demand :
The Elasticity of demand can be measured mainly in three ways.

  1. Total outlay (or) Expenditure method
  2. Point method and
  3. Arc method.

1) Total outlay (or) Expenditure method : This method was introduced by Alfred Marshall. Price elasticity of demand can be measured on the basis of change in the total outlay due to a change in the price of a commodity. This method helps us to compare the total expenditure from a buyer or total revenue from the seller before and after the change in price.
Total outlay = Price × Quantity demanded
According to this method the price elasticity of demand is expressed in three forms, they are elastic demand, unitary elastic and inelastic demand. This can be explained with the help of table.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 15
In this table shows that

  1. If the total expenditure increases due to a fall in price is known as relatively elastic demand.
  2. If total expenditure remains constant even the price falls is known as unitary elastic demand.
  3. If the total expenditure decreases due to a fall in price is known as relatively inelastic demand.

2) Point method : This method is introduced by Marshall. In this method elasticity of demand is measured at a point on the demand curve. So, this method is also called as “geometrical method”. In this method to measure elasticity at a point on demand curve the following formula is applied.
Ed = \(\frac{\text { The distance from the point to the } \mathrm{X} \text {-axis }}{\text { The distance from the point to the } \mathrm{Y} \text {-axis }}\)
In the below diagram ‘AE’ is straight line demand curve. Which is 10 cm length. Applying the formula we get
Ed = 1 Ed < 1 Ed = 0
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 16
Elasticity at point A, Ed = \(\frac{\mathrm{AE}}{\mathrm{A}}=\frac{10}{0}\) = 0
Elasticity at point B, Ed = \(\frac{\mathrm{BE}}{\mathrm{BA}}=\frac{7.5}{2.5}\) = 3 > 1
Elasticity at point C, Ed = \(\frac{\mathrm{CE}}{\mathrm{CA}}=\frac{5}{5}\) = 1
Elasticity at point D, Ed = \(\frac{\mathrm{DE}}{\mathrm{DA}}=\frac{1}{3}\) = < 1
Elasticity at point E, Ed = \(\frac{\mathrm{E}}{\mathrm{DA}}=\frac{0}{10}\) = 0
if the demand curve is non-linear. It means if the demand curve is not straight line will be drawn at the point on the demand curve where to measure elasticity.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 17
In the diagram at C point where Elasticity of demand will be equal to \(\frac{\mathrm{CB}}{\mathrm{CA}}\).

3) Arc method : The word ‘ArC means a portion or a segment of a demand curve. In this method mid points between the old and new price and quantities demanded are used. This method used to known small changes in price. This method is also known as ‘Average Elasticity of demand”. This method studies a segment of the demand curve between two points the formula for measuring elasticity is given below.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 18
Suppose we take price of the commodity is ₹ 4/- demand is 300 units. If price falls ₹ 3/ – demand increases 400 units.
Then applying above formula Arc elasticity of demand is
\(\frac{100}{300+400} \div \frac{1}{4+3}=\frac{100}{700} \div \frac{1}{7}\)
= \(\frac{100}{700} \times \frac{7}{1}=\frac{700}{700}\) = 1
∴ Ed = 1

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 8.
What are the factors that determine Price Elasticity of Demand ?
Answer:
The term elasticity refers to the measure of extent of relationship between two related variables. The elasticity of demand is the measure of responsiveness or sensitiveness of demand for a commodity to the change in it demand.
Determinants of Elasticity of Demand : The. elasticity of demand varies from commodity to commodity.
1) Nature of commodity: Commodities can be grouped as necessaries, comforts and luxuries. In case of necessaries, the elasticity of demand will be inelastic.
Ex : Rice, salt etc. On the other hand in case of luxuries the demand will be more elastic.
Ex : Diamonds & gold etc.

2) Availability of substitutes : Prices of substitutes influence the demand for a com-modity upto a certain extent. The closer the substitute, the greater the elasticity of demand for the commodity. For Ex : Cool drinks, soaps etc. but in case of non-availability of substitutes the elasticity of demand will be low.

3) Complementary goods: Price elasticity for a good is also depends on the nature of price elasticity of jointly demand goods. If the demand for car is elastic, then the demand for petrol will also be elastic.

4) Multiple uses of the commodity : The wider the range of alternative uses of a product, the higher the elasticity of demand and vice-versa.
Ex : Coal and electricity have multiple uses and will have elastic demand.

5) Proportion of income spent: If proportion of income spent on commodity is very small, its demand will be less elastic and vice-versa.

6) Period of time : In the long run, demand will be more elastic. Longer the time period considered, greater will be the possibility of substitution. For a cheaper good.
Ex : If the price of petrol increases in the short run, it may not be possible to replace the petrol engines with diesel engines but in the long run it can be possible.

7) Price level: Goods which are in very high range or in very low range have inelastic demand but it is high at moderate price.

8) Habit : The demand for a commodity to which the consumer is accustomed is generally inelastic.
Ex : Tobacco and alcohol.

9) Income group : The demand of higher income groups will be inelastic as they do not bother about price changes. On the other hand, the demand of middle and lower income groups will be elastic.

10) Postponement of purchase: The demand for a commodity, the consumption of which can be postponed is more eiastic than that of the use of the commodity cannot be postpone the purchases of such goods like life saving medicines.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 9.
Explain importance of Elasticity of Demand.
Answer:
The term elasticity refers to the measure of extent of relationship between two related variable. The elasticity of demand is the measure of responsiveness or sensitiveness of demand for a commodity to the change in it demand.
Importance :
1) Useful to monopolist: Monopolist should study the elasticity of demand for his commodity before fixing up the price. Monopolist will fix a higher price when the commodity inelastic demand, but he will fix a lower price when the commodity has elastic demand.

2) Useful to joint products : It is useful in the price fixation of joint goods like meat and fur. In such case the producer wall be guided by elasticity of demand to fix the prices of the joint goods.

3) Useful to the government: The concept of elasticity can be used in formulating government policies relating public utility service like Railways, drug industry etc.

4) Useful to international trade : In calculating the terms of trade both countries have to take into account the mutual elasticities of demand for the products.

5) Useful to finance minister : The concept of elasticity is useful to the Finance Minister in imposing taxes on goods. The finance minister studies the elasticity of commodities before he imposes new taxes or enhances old taxes.

6) Useful to Management: Before asking for higher wages trade union leaders must know the elasticity of demand of the product produced by them. Trade union leaders may demand for higher wages only when the goods produced by them have inelastic demand.

7) Useful to producers : Volume of goods must be produced in accordance with demand for the commodity. Whenever the demand for the commodity is inelastic, the producer will produce more commodities to take advantage of higher price. So, it helps in determining the volume of output.

Short Answer Questions

Question 1.
Explain the Law of Demand or Price Demand.
Answer:
Demand means a desire which is backed up by ability to buy and willingness to pay the price is called demand in Economics. Thus demand will be always to a price and time. Demand has the following features.

  1. Desire for the commodity
  2. Ability to buy the commodity
  3. Willing to pay the price of commodity
  4. Demand is always at a price ‘
  5. Demand is per unit of time i.e, per day, week etc.

Therefore the price demand may be expressed in the form of small equation.
Dx = f(Px)
Price demand explains the relation between price and quantity demanded of a commodity. Price demand states that there is an inverse relationship between price and demand.

Law of demand : Marshall defines the law of demand as, “The amount demanded increases with a fall in price and diminishes with arise in price when other things remain the same”. So, the law of demand explains the inverse relationship between the price and quantity demanded of a commodity.

Demand schedule : It means a list of the quantities demanded at various prices in a given period of time in a market. An imaginary example given below.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 19
The table shows that as the price falls to ₹ 1/- the quantity demanded 50 units, when price ₹ 5/- he is buying 10 units. So, there is inverse relationship between price and demand. Price is low demand will be high and price is high demand will be low. We can illustrate the above schedule in a diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 20
In the above diagram on X-axis demand is shown and price is on Y-axis. DD is the demand curve. Demand curves slopes downward from left to right.
Assumptions :

  1. No change in the income of consumer
  2. The taste and preferences consumers remain same.
  3. The prices of related goods remain the same.
  4. New substitutes are not discovered.
  5. No expectation of future price changes.

Exceptions : In certain situations, more will be demanded at higher price and less will be demanded at a lower price. In such cases the demand curve slopes upward from left to right which is called an exceptional demand curve. This can be shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 21
In the diagram when price increases from OP to OP1, demand also increases from OQ to OQ1. This is opposite to law of demand.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 2.
Explain the Exceptions to the Law of Demand or Price Demand.
Answer:
In Economics demand means a desire which is backed up by ability to buy and willingness to pay the price. Thus demand will be always at a price and time.

According to Marshal “The amount demanded increases with a fall in price and diminishes with rise in price when other things remain the same”.

Exceptions : In certain situations, more will be demanded at higher price and less will be demanded at a lower price. In such cases the demand curve slopes upward from left to right which is called an exceptional demand curve. This can be shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 22
In the diagram when price increases from OP to OP1, demand also increases from OQ to OQ1. This is opposite to law of demand.

Question 3.
Why a Demand Curve has a negative slope or why Demand Curve slopes downward ? [March 18]
Answer:
According to Marshall “The amount demanded increases with a fall in price and diminishes with a rise in price when other things remain the same”.

The law of demand explains inverse relationship between the price and quantity demanded of a commodity. Therefore the demand curve slopes downward from left to right.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 23
There are some other reasons also responsible for downward sloping demand curve.
1) Old and new buyers : If the price of a good falls, the real income of the old buyers will increase. Hence the demand for the good will increase. In the same way, the fall in price attracts new buyers and will be able to built after a fall in its price. So the demand curve slopes downards from left to right.

2) Income effect: Fall in price of commodity the real income of its consumers increase. The increase in real income encourages demand for the commodity with reduced price. The increase in demand on account of increased in real income is known as income effect.

3) Substitution effect: When the price of commodity falls, it will become relatively cheaper than its substitutes. The increase in demand on account of increased in real income is known as income effect.

4) Law of diminishing marginal utility: According to this law, if consumer goes on consuming more units of the commodity, the additional utility goes on diminishing. Therefore, the consumer prefers to buy at a lower price. As a result the demand curve has a negative slope.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 4.
Explain the concept of Income Demand.
Answer:
Income demand : It explains the relationship between consumers income and various quantities of various levels of income assuming other factors like price of goods, related goods, taste etc; remain the same. It means if income increases quantity demand increases and vice versa. This can be shown in the following form.
Dx = f(Y)
The functional relationship between income and demand may be inverse or direct depending on the nature of the commodity. This can be shown in the following table.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 24
Superior goods : In case of superior goods quantity demanded will increase when there is an increase in the income of consumers.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 25
In the diagram ‘X’ axis represents demand, OY axis represents income, YD represents the income demand curve. It showing positive slope whenever income increased from OY to OY1 the demand of superior or normal goods increases from OQ to OQ1.
This may happens in case of Veblen goods.

Inferior goods : On the contrary quantity demanded of inferior goods decreases with the increase in incomes of consumers.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 26
In the diagram on ‘OX’ axis measures demand and OY axis represents income of the consumer. When the consumer income increases from OY to OY1 the demand for a commodity decreases from OQ to OQ1 So the YD’ curve is negative sloping.

Question 5.
Explain the concept of Cross Demand.
Answer:
Cross demand: Cross demand refers to the relationship between any two goods which are either complementary to each other or substitute for each other. It explains the functional relationship between the price of one commodity and quantity demanded of another commodity is called cross demand.
Dx = f(Py)
Where Dx = demand for ‘X’ commodity
Px = Price of ‘y’ commodity
f = function
Substitutes : The goods which satisfy the same want are called substitutes.
Ex : Tea and coffee; pepsi and coca-cola etc. In the case of substitutes, the demand curve has a positive slope.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 27
In the diagram ‘OX’ axis represents demand of tea and OY axis represents price of coffee. Increase in the price of coffee from OY to OY2 leads to increase in the demand of tea from OQ to OQ2.

Complementaries: In case of complementary goods, with the increase in price of one commodity, the quantity demanded of another commodity falls.
Ex : Car and Petrol. Hence the demand curve of these goods slopes downward to the right.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 28
In the diagram if price of car decreases from OP to OP2 the quantity demand of petrol increases from OQ to OQ2. So cross demand i.e., CD curve is down ward slopes.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 6.
What are the factors that determine Demand ? [March 18, 17]
Answer:
The functional relationship between the demand for a commodity and its various determinants may be explained mathematically in terms of a demand function.
Dx = f(Px,P1, ………… Pn, Y, T)
Where Dx = Demand for good X;
Px = price of X;
P1 …. Pn = Prices of substitutes and complementaries
Y = Income,
T = Taste of the consumer.
Determinants of demand :
1) Price of commodity: The demand for any good depends on its price, more will be demanded at lower price and vice-versa.

2) Prices of substitutes and complementaries : Demand is influenced by changes in price of related goods either substitutes or complementary goods.
Ex: Increase in the price of coffee leads an increase in the demand for tea in the case of substitutes positive relation and complementaries negative relationship between price and demand.

3) Income of the consumer : Demand always changes with a change in the incomes of the people. When income increases the demand for several commodities increases and vice-versa.

4) Population : A change in the size and composition of population will effect the demand for certain goods like food grains, clothes etc.

5) Taste and preferences: A change in the taste and the fashions bring about a change in the demand for a commodity.

6) Technological changes: Due to economic progress technological changes the quantity the quality of goods available to the consumers increase.
Ex : Demand for cell phones reduced the demand for landline phones.

7) Change in the weather : Demand for commodity may change due to change in a climatic condition.
Ex : During summer demand for cool drinks, in winter demand for wollen clothes.

8) State of business : During the period of prosperity demand for commodities will expand and during depression demand will contract.

Question 7.
What is Elasticity of Demand ?
Answer:
In Economic theory, the concept of elasticity of demand has a significant role. Elasticity of demand means the percentage change in quantity demanded in response to the percentage change in one of the variables on which demand depends.
Elasticity of demand changes from person to person, place to place, time to time and one commodity to another.
Accoridng to Marshall “The elasticity of demand in a market is great or small according as the amount demanded increases much or little for a given fall in price”.
The concept of elasticity of demand explains how much or to what extent a change in any one of the independent variables leads to a change in the dependent variable.
There are three kinds of elasticity of demand.

  1. Price Elasticity of demand
  2. Income Elasticity of demand .
  3. Cross Elasticity of demand

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 8.
Explain the three types of Elasticity of Demand.
Answer:
The concept of elasticity demand was first introduced by Cournot and Mill. Later it was developed in a scientific manner by Marshall. Elasticity of demand means the degree of sensitiveness or responsiveness of demand to a change in its price.

According to Marshall “The elasticity of demand in a market is great or small according as the amount demanded increases much or little for a given fall in price”.

The concept of elasticity of demand explains how much or to what extent a change in any one of the independent variables leads to change in the dependent variable.
There are three kinds of elasticity of demand.

  1. Price elasticity of demand
  2. Income elasticity of demand
  3. Cross elasticity of demand

1) Price Elasticity of Demand : Alfred Marshall developed the concept of price elasticity of demand. Price elasticity of demand is generally defined as the degree of responsiveness or sensitiveness of demand for a commodity to the changes in its price. Thus price elasticity of demand is the ratio of percentage change in quantity demanded of a good and percentage change in its price. The following formula to measure price elasticity of demand.
Ep = \(\frac{\text { Percentage change in quantity demanded }}{\text { Percentage change in price }}\)
= \(\frac{\text { Change in quantity demanded }}{\text { Original quantity demanded }} \times \frac{\text { Original price }}{\text { Change in price }}\)
= \(\frac{\Delta \mathrm{q}}{\mathrm{q}} \times \frac{\mathrm{p}}{\Delta \mathrm{p}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{p}} \times \frac{\mathrm{p}}{\mathrm{q}}\)
where q = quantity;
p = price;
∆q = change in quantity demanded;
∆p = change in price.
There are five kinds of price elasticity of demand. They are :

  1. Perfectly Elastic demand (Ed = α)
  2. Perfectly Inelastic demand (Ed = 0)
  3. Unitary Elastic demand (Ed = 1)
  4. Relatively Elastic demand (Ed > 1)
  5. Relatively Inelastic demand (Ed < 1)

2) Income Elasticity of Demand : Income elasticity of demand shows the degree of responsiveness of quantity demanded of a commodity to a change in the income of the consumer, other things remain constant.
Ey = \(=\frac{\text { Percentage change in quantity demanded }}{\text { Percentage change inconsumer’s income }}\)
= \(=\frac{\text { Change in quantity demanded }}{\text { Original quantity demanded }} \times \frac{\text { Original income }}{\text { Change in income }}\)
= \(\frac{\Delta \mathrm{q}}{\mathrm{q}} \times \frac{\mathrm{y}}{\Delta \mathrm{y}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{y}} \times \frac{\mathrm{y}}{\mathrm{q}}\)
where q = Quantity;
y = income;
∆Q = change in quantity demanded;
∆y = change in income.
Income elasticity of demand will be positive in case of superior goods like milk and meat and negative in case of inferior goods like porridge and broken rice.

3) Cross Elasticity of Demand : Cross elasticity of demand refers to change in the quantity demanded of one good in response to change in the price of related good, other things remaining constant. There are certain goods whose demand depend not only to their price but also on the prices of related goods.
Ec = \(\frac{\text { Percentage change in quantity demanded of X }}{\text { Percentage change in the price of } Y}\)
Ec = \(\frac{\Delta \mathrm{Qx}}{\mathrm{Qx}} \div \frac{\Delta \mathrm{Py}}{\mathrm{Py}}=\frac{\Delta \mathrm{Qx}}{\mathrm{Qx}} \times \frac{\mathrm{Py}}{\Delta \mathrm{Py}}=\frac{\Delta \mathrm{Qx}}{\Delta \mathrm{Px}} \times \frac{\mathrm{Py}}{\mathrm{Px}}\)
Where Q(x) = Quantity demanded for X; P(y) = price of commodity (Y), ∆Q(x) = change in quantity demanded of X commodity, ∆P(y) = change in price of commodity Y.
Substitute goods like tea and coffee have positive cross elasticity demand where as complementary goods like shoes and socks have negative cross elasticity of demand.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Quantity 9.
Define Price Elasticity of Demand. Explain briefly various types of Price Elasticity of Demand.
Answer:
Alfred Marshall developed the concept of price elasticity of demand. Price elasticity measures, other things remaining constant, change in the demanded of a good in response to a change in its price. Thus price elasticity of demand is the ratio of percentage change in quantity demanded of a good and percentage change in its price. Price elasticity can be written as stated below.
Ep = \(\frac{\text { Percentage change in quantity demanded }}{\text { Percentage change in price }}\)
= \(\frac{\text { Change in demand }}{\text { Original demand }} \times \frac{\text { Original price }}{\text { Change in price }}\)
= \(\frac{\Delta \mathrm{q}}{\mathrm{q}} \times \frac{\mathrm{p}}{\Delta \mathrm{p}}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{p}} \times \frac{\mathrm{p}}{\mathrm{q}}\)
Where q = quantity; p = price; ∆q = change in demand; ∆p = change in price
Types of price elasticity of demand : Based on numerical value, price elasticity of demand can be five types.

  1. Perfectly Elastic demand (Ed = ∞)
  2. Perfectly Inelastic demand (Ed = 0)
  3. Unitary Elastic demand (Ed = 1)
  4. Relatively Elastic demand (Ed > 1)
  5. Relatively Inelastic demand (Ed < 1)

1) Perfectly Elastic demand : It is also known as “infinite elastic demand”. A small change in price leads to an infinite change in demand is called perfectly elastic demand. It is horizontal straight line to ‘X’ axis. The numerical value of perfectly elastic demand is infinite (Ed = ∞). It can be shown in the diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 10
In the diagram, Ed = \(\frac{\mathrm{OQQ}_1}{\mathrm{OQ}} \div \frac{\mathrm{O}}{\mathrm{OP}}\)
= \(\frac{\mathrm{QQ}_1}{\mathrm{OQ}} \times \frac{\mathrm{OP}}{\mathrm{O}}\) = ∞

2) Perfectly Inelastic demand: It is also known as “zero elastic demand”. In this case even a great rise ‘or fall in price does not lead to any change in quantity demanded is known as perfectly inelastic demand. The ‘demand curve will be vertical to the Y axis. The numerical value is ‘OE. This can be shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 11
In the diagram, Ed = \(\frac{\text { Zero }}{\mathrm{OQ}} \div \frac{\mathrm{PP}_1}{\mathrm{OP}}\) = 0
∴ Ed = 0

3) Unitary Elastic demand: The percentage change in price leads to same percentage change in demand is called unitary elastic demand. In this case the elasticity of demand is equal to one. The shape of demand curve is “Rectangular Hyperbola”. This can be shown in the following.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 12
In the diagram, Ed = OP1Q1 = OPQ
(or) OQ1 = PP1
∴ Ed = 1

4) Relatively Elastic demand: When a percentage change in price leads to more than percentage change in quantity demand is called relatively elastic demand. In this case the numerical value of Ed is greater than one (Ed > 1)
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 13
In the diagram, Ed = OQ1 > PP1
∴ Ed > 1

5) Relatively Inelastic demand : When the percentage change in price leads to a less than percentage change in quantity demand is called relatively inelastic demand. Here the numerical value is less than one (Ed < 1) . This can be shown to following diagram.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 14
In the diagram, Ed = QQ1 < PP1
∴ Ed < 1

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 10.
Explain the Total Outaly method of Measuring Elasticity of Demand.
Answer:
Total Outlay (or) Expenditure method : This method was introduced by Alfred Marshall. Price elasticity of demand can be measured on the basis of change in the total outlay due to a change in the price of a commodity. This method helps us to compare the total expenditure from a buyer or total revenue from the seller before and after the change in price.
Total outlay = Price × Quantity demanded
According to this method the price elasticity of demand is expressed in three forms, they are elastic demand, unitary elastic and inelastic demand. This can be explained with the help of table.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 29
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 30
In this table shows that

  1. If the total expenditure increases due to a fall in price is known as relatively elastic demand.
  2. If total expenditure remains constant even the price falls is known as unitary elastic demand.
  3. If the total expenditure decreases due to a fall in price is known as relatively inelastic demand.

In the diagram on ‘OX’ axis measure total expenditure and ‘OY axis measures price. The total outlay curve AD is shown in three parts i.e., A to B; B to C and C to D.

Question 11.
Explain the Point method of Measuring Price Elasticity of Demand or How do you measure Elasticity of Demand on straight line Demand Curve ?
Answer:
Point method : This method is introduced by Marshall. In this method elasticity of demand is measured at a point on the demand curve. So, this method is also called as “geometrical method”. In this method to measure elasticity at a point on demand curve the following formula is applied.
Ed = \(\frac{\text { The distance from the point to the } \mathrm{X} \text {-axis }}{\text { The distance from the point to the } \mathrm{Y} \text {-axis }}\)
In the below diagram ‘AE’ is straight line demand curve. Which is 10 cm length. Applying the formula we get
Ed = 1 Ed < 1 Ed = 0
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 31
Elasticity at point A, Ed = \(\frac{\mathrm{AE}}{\mathrm{A}}=\frac{10}{0}\) = 0
Elasticity at point B, Ed = \(\frac{\mathrm{BE}}{\mathrm{BA}}=\frac{7.5}{2.5}\) = 3 > 1
Elasticity at point C, Ed = \(\frac{\mathrm{CE}}{\mathrm{CA}}=\frac{5}{5}\) = 1
Elasticity at point D, Ed = \(\frac{\mathrm{DE}}{\mathrm{DA}}=\frac{1}{3}\) = < 1
Elasticity at point E, Ed = \(\frac{\mathrm{E}}{\mathrm{DA}}=\frac{0}{10}\) = 0
If the demand curve is non-linear. It means if the demand curve is not straight line will be drawn at the point on the demand curve where to measure elasticity.
AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand 32
In the diagram at C point where Elasticity of demand will be equal to \(\frac{\mathrm{CB}}{\mathrm{CA}}\).

Question 12.
What are the basic determinants of Elasticity of Demand ?
Answer:
The term elasticity refers to the measure of extent of relationship between two related variables. The elasticity of demand is the measure of responsiveness or sensitiveness of demand for a commodity to the change in it demand.
Determinants of Elasticity of Demand : The. elasticity of demand varies from commodity to commodity.
1) Nature of commodity: Commodities can be grouped as necessaries, comforts and luxuries. In case of necessaries, the elasticity of demand will be inelastic.
Ex : Rice, salt etc. On the other hand in case of luxuries the demand will be more elastic.
Ex : Diamonds & gold etc.

2) Availability of substitutes : Prices of substitutes influence the demand for a com-modity upto a certain extent. The closer the substitute, the greater the elasticity of demand for the commodity. For Ex : Cool drinks, soaps etc. but in case of non-availability of substitutes the elasticity of demand will be low.

3) Complementary goods: Price elasticity for a good is also depends on the nature of price elasticity of jointly demand goods. If the demand for car is elastic, then the demand for petrol will also be elastic.

4) Multiple uses of the commodity : The wider the range of alternative uses of a product, the higher the elasticity of demand and vice-versa.
Ex : Coal and electricity have multiple uses and will have elastic demand.

5) Proportion of income spent: If proportion of income spent on commodity is very small, its demand will be less elastic and vice-versa.

6) Period of time : In the long run, demand will be more elastic. Longer the time period considered, greater will be the possibility of substitution. For a cheaper good.
Ex : If the price of petrol increases in the short run, it may not be possible to replace the petrol engines with diesel engines but in the long run it can be possible.

7) Price level: Goods which are in very high range or in very low range have inelastic demand but it is high at moderate price.

8) Habit : The demand for a commodity to which the consumer is accustomed is generally inelastic.
Ex : Tobacco and alcohol.

9) Income group : The demand of higher income groups will be inelastic as they do not bother about price changes. On the other hand, the demand of middle and lower income groups will be elastic.

10) Postponement of purchase: The demand for a commodity, the consumption of which can be postponed is more eiastic than that of the use of the commodity cannot be postpone the purchases of such goods like life saving medicines.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 13.
Explain the importance of the Concept of Elasticity of Demand.
Answer:
The term elasticity refers to the measure of extent of relationship between two related variable. The elasticity of demand is the measure of responsiveness or sensitiveness of demand for a commodity to the change in it demand.
Importance :
1) Useful to monopolist: Monopolist should study the elasticity of demand for his commodity before fixing up the price. Monopolist will fix a higher price when the commodity inelastic demand, but he will fix a lower price when the commodity has elastic demand.

2) Useful to joint products : It is useful in the price fixation of joint goods like meat and fur. In such case the producer wall be guided by elasticity of demand to fix the prices of the joint goods.

3) Useful to the government: The concept of elasticity can be used in formulating government policies relating public utility service like Railways, drug industry etc.

4) Useful to international trade : In calculating the terms of trade both countries have to take into account the mutual elasticities of demand for the products.

5) Useful to finance minister : The concept of elasticity is useful to the Finance Minister in imposing taxes on goods. The finance minister studies the elasticity of commodities before he imposes new taxes or enhances old taxes.

6) Useful to Management: Before asking for higher wages trade union leaders must know the elasticity of demand of the product produced by them. Trade union leaders may demand for higher wages only when the goods produced by them have inelastic demand.

7) Useful to producers : Volume of goods must be produced in accordance with demand for the commodity. Whenever the demand for the commodity is inelastic, the producer will produce more commodities to take advantage of higher price. So, it helps in determining the volume of output.

Very Short Answer Question

Question 1.
Demand
Answer:
The desire backed up by willingness and ability to pay a sum of money for some quantity of a good or service.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 2.
Demand Schedule [March 17]
Answer:
It shows the functional relationship between the quantity of commodity demanded and its price. The demand schedule may be two types.

  1. Individual demand schedule
  2. Market demand schedule

Question 3.
Individual Demand Schedule
Answer:
It explains the relationship between various quantities purchased at various prices by a single consumer in the market.

Question 4.
Market Demand Schedule
Answer:
It shows the total demand for a group at a particular time at different prices in the market.

Question 5.
Demand Function
Answer:
Demand function shows the functional relationship between quantity demanded at various factors that determine the demand for a commodity. It can be expressed as follows.
Dx = f(Px, P1, ………… Pn, Y, T)
Where
Dx = Demand for good X
Px = price of X
P1 …. Pn = Prices of substitutes and complementary
Y = Income of consumer
T = Tastes
f = Functional relationship

Question 6.
Giffen’s Paradox (or) Giffen Goods [March 18, 16]
Answer:
It means necessary goods Sir Robert Giffen in mid 19th century observed that the low paid workers in England purchased more bread when its price increase by decrease in the purchase of meat. The increase in demand for bread when price increased is an exception to the law of demand, it is known as Giffen’s paradox.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 7.
Veblen Goods (or) Prestigious Goods
Answer:
This is associated with the name of T.Veblen costly goods like diamonds and cars are called Veblen goods generally rich people purchase those goods. For the sake of prestage. Hence rich people may buy more such goods when their prises rise.

Question 8.
Speculation
Answer:
When the price of commodity rises the group of speculats except that be rise still further. Therefore, they buy more of the commodity. If they expect that there is a fallen price, the demand may not expand. Ex : shares.

Question 9.
Price Demand
Answer:
It explains the functional relationship between price of good and quantity of demanded when the remaining factors constant. It shows inverse relationship between price and demand.
Dx = f(Px)
Dx = Demand for X commodity
Px = Price of X

Question 10.
Income Demand [March 17]
Answer:
It shows the direct relationship between the income of the consumer and quantity demanded when the other factors remain constant. There is direct relationship between income and demand for superior goods. Inverse relationship between income and demand for inferior goods.
Dx = f(Y)

Question 11.
Cross Demand [March 18]
Answer:
Cross demand refers to the relationship between any two goods which are either complementary to each other or substitute of each other at different prices.
Dx = f(Py)

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 12.
Substitutes
Answer:
These are goods which satisfy the same want.
Ex : tea and coffee. In this case the relationship between demand for a product and the price of its substitute is positive in its nature.

Question 13.
Complementaries
Answer:
These are goods which satisfy the same wants jointly.
Ex : Shoes and socks, car and petrol. The relationship between complementary goods is inverse.

Question 14.
Inferior Goods
Answer:
The goods whose income elasticity of demand is negative for levels of income are termed as inferior goods. In case of inferior goods if income increases demand decreases and vice-versa. The income demand for inferior goods has a negative slope.

Question 15.
Elasticity of Demand
Answer:
It means the degree of responsiveness of demand or the sensitiveness of demand to change in price. This was developed by Marshall It explains how much demand increases due to fall in price and how much demand decreases due to rise in price.

Question 16.
Price Elasticity of Demand
Answer:
It is the percentage change in quantity demanded of a commodity as a result of percentage change in price of a commodity.
Ed = \(\frac{\text { Percentage change in quantity demanded }}{\text { Percentage change in price }}\)

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 17.
Income Elasticity of Demand
Answer:
It is the percentage change in quantity demanded of a commodity as a result of percentage change in the income of the consumer.
Ey = \(\frac{\text { Percentage change in quantity demanded }}{\text { Percentage change in consumer’s income }}\)

Question 18.
Cross Elasticity of Demand
Answer:
It is the percentage change in the quantity demanded of a commodity as a result of proportional change in the price of related commodity.
Ec = \(\frac{\text { Percentage change in quantity demanded of } \mathrm{X}}{\text { Percentage change in the price of } \mathrm{Y}}\)

Question 19.
Perfectly Elastic Demand
Answer:
If a negligible change in price leads to an infinite change in demand is called perfectly elastic demand. In this case the demand curve is horizontal to ‘X’ axis.

Question 20.
Perfectly Inelastic Demand [March 16]
Answer:
Even a great rise or fall in price does not lead and change in quantity demanded is known as perfectly inelastic demand. The demand curve is vertical to ‘Y’ axis.

Question 21.
Unitary Elastic Demand
Answer:
The proportionate change demand is equal to the proportionate change in price. In this case the demand curve will be a rectangular hyperbola.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 22.
Relatively Elastic Demand
Answer:
When a proportionate change in price leads to more than proportionate change in quantity demand is called relatively elastic demand.

Question 23.
Relatively Inelastic Demand
Answer:
When the proportionate change in price leads to a less than proportionate change in quantity demand is called relatively inelastic demand.

Question 24.
Arc method
Answer:
Arc method is the elasticity of the mid point of an arc of a demand curve. It studies a portion of the demand curve between two points. This is used when the change in price is not very large.

Question 25.
Importance of Price Elasticity of Demand.
Answer:

  1. It is useful to finance minister in imposing taxes.
  2. Useful to monopolist for fixing the price.
  3. Useful in determination of wages.
  4. Useful in determination of prices of factors of production.

Additional Questions

Question 26.
Terms of Trade
Answer:
It is the ratio of an index of a country’s export price to an index of its important price.

AP Inter 1st Year Economics Study Material Chapter 3 Theory of Demand

Question 27.
Tax
Answer:
Tax is a compulsory payment collected from individuals or firms by central, state and local governments.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Andhra Pradesh BIEAP AP Inter 1st Year Economics Study Material 2nd Lesson Theory of Consumers Behaviour Textbook Questions and Answers.

AP Inter 1st Year Economics Study Material 2nd Lesson Theory of Consumers Behaviour

Essay Questions

Question 1.
Explain the law of diminishing marginal utility and its limitations. [March 17]
Answer:
Hermann Heinrich Gossen was the first economist to explain the law of diminishing marginal utility in 1854. It is also known as Gossen’s ‘first law’. In 1890 Marshall in his principles of economics developed and popularised this analysis. This law explains the functional relationship between the stock of commodity and the marginal utility of the commodity.

According to Marshall “The additional benefit which a person derives from a given increase of his stock thing diminishes with every increase in the stock that he already has”.

“A consumer increases the consumption of any one commodity keeping constant the consumption of all other commodities the marginal utility of the variable commodity must eventually decline”. Kenneth E.Boulding.

The law says that as we gone consuming a commodity satisfaction derives from its additional units goes on diminishes.
Assumptions :

  1. Rationality : Consumer is a rational man which means he always tries to get maximum satisfaction.
  2. Cardinal measurement of utility : Utility is a cardinal concept, i.e., utility can be measured and compared numerically.
  3. Utilities are independent: It implies that utility of any commodity depends as its own quantity
  4. Homogeneous : Units of the commodity are similar in quantity, size, taste and colour etc.
  5. No time gap : There should not be any time gap between the consumption of one unit and other it.
  6. Constant marginal utility : It is assumed that the marginal utility of money remains constant. ’
  7. Total & marginal utility : Total utility : Total satisfaction obtained by the consumer from the consumption of a given quantity of commodity.
    TUn = f(Qn)
    Where TUn = Total utility of n commodity,
    f = functional relationship,
    Qn = Quantity of n commodity.

Marginal utility: Marginal utility is the addition made to the total utility by consuming one more unit of the commodity.
It can be explained as
MUn = TUn – TUn-1
MUn = Marginal utility of nth unit
TUn = Total utility of nth unit
TUn-1 = Total utility of n – 1 units.
MU may also be expressed as follows.
Marginal utility is the additional utility derived from the consumption of an extra unit of commodity.
MU = \(\frac{\Delta \mathrm{TU}}{\Delta \mathrm{C}}\)
Where ∆TU = Change in total utility
∆C = Change in no. of units consumed.

Explanation of the law : The law of diminishing marginal utility explains the relation between the quantity of good and its marginal utility. If a person goes on increasing his stock of a thing, the marginal utility derived from an additional unit declines. We show this tendency with an imaginary table given below.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 1
In the table let us suppose that one is fond of apples. As he consumes one apple after another he derives less and less satisfaction. The first unit consumed with atmost pleasure. For the second, the intensity of his desire diminishes. The third will be still less and so on. The total utility increasing until the consumption of fourth unit of good but diminishing rate. Fifth unit of apple gives him maximum total utility. But marginal utility becomes zero. Further consumption of sixth unit TU diminishes and MU becomes negative.

The relationship between total utility and marginal utility is explained in the following three ways.

  1. When total utility increases at diminishing rate, marginal utility falls.
  2. When total utility is maximum, marginal utility becomes zero.
  3. When total utility decreases, marginal utility becomes negative.

This can be shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 2
In the diagram on ‘X’ axis measures units of apples and OY axis measures total utility and marginal utility. TU curve represents total utility and MU curve represents marginal utility. TU curve is maximum at 5th unit where MU curve will become zero. TU curve slopes downwards from 6th unit, while MU will become negative.

Limitations or Exceptions :

  1. Hobbies: This law does not operate in the case of hobbies like collection of stamps, old paintings, coins etc. Greater the collections of a person, greater is his satisfaction. Marginal utility will not diminish.
  2. Drunkers : It is pointed out that the consumption of liquor is not subject to the law of diminishing marginal utility. The more a person drinks liquor, the more he likes it.
  3. Miser : This law does not apply to money. The more money a person has the greater is the desire to acquire still more of it.
  4. Further, this law does not hold good if any change in income of the consumer, tastes and preferences.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 2.
Critically examine the law of equi-marginal utility.
Answer:
Law of equi – marginal utility is an important law of consumption. It is called as “Gossen’s second law”, as its formulations is associated with the name of H.H.Gossen.

According to Marshall “If person has a thing which can be put to several uses, he will distribute it among these uses in such a way that it has the same marginal utility in all uses. If it had a greater marginal utility in one use than in another, he would gain by taking away some of it from the second and applying it to the first”.

According to this law the consumer has to distribute his money income on different uses in such a manner that the last rupee spent on each commodity gives him the same marginal utility. Equalisation of marginal utility in different uses will maximise his total satisfaction. Hence this law is known as the “Law of equi-marginal utility”.

The fundamental condition for consumer’s equilibrium can be explained in the following way.
\(\frac{\mathrm{MU}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{x}}}=\frac{\mathrm{MU}_{\mathrm{y}}}{\mathrm{P}_{\mathrm{y}}}=\frac{\mathrm{MU}_{\mathrm{z}}}{\mathrm{P}_{\mathrm{z}}}\) = MUm
Where MUx, MUy, MUz, MUm = Marginal utilities of commodities x, y, z, m;
Px, py, pz = Prices of X, y, z.
This law can be explained with the help of a table. Suppose the consumer is prepared to spend his money income is ₹ 26/- on two goods X and Y. Market prices of two goods are ₹ 4/- & ₹ 5/- respectively. Now the marginal utilities of good x & good y are shown below.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 3
For explaining consumer’s maximum satisfaction and consequent equilibrum position we need to reconstruct the above table by dividing marginal utilities of x by its price ₹ 4/- and marginal utility of y by ₹ 5/-. This is shown in the following table.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 4
In the table it is clear that when consumer purchase 4 units of goods x & 2 units of good y. Therefore, consumer will.be in equilibrium when he is spending (4 × 4 = 16 + 2 × 5 = 10) ₹ 26 on them.
Limitations of the law : The law of equi marginal utility has been subject to certain limitations which are as given below.

  1. The law assumes that consumer is a rational man and always tries to get maximum satisfaction. But it is not possible always to compare the utilities derived from different commodities.
  2. This law not applicable when goods are indivisible.
  3. The law is based on unrealistic assumptions like cardinal measurement of utility and marginal utility of money remains constant. In real world MU of money does not remain constant.
  4. This law will not be applicable to complementary goods.
  5. Another limitations of this law is that there is no fixed accounting period for the consumer in which he can buy and consume goods.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 3.
Explain consumer’s equilibrium with law of equi-marginal utility. [March 18]
Answer:
Law of equi-marginal utility is an important law of consumption. It is called as “Gossen’s with the name of H.H.Gossen. According to Marshall “If person has a thing which can be put to several uses, he will distribute it among these uses in such a way that it has the same marginal utility in all uses. If it had a greater marginal utility in one use than in another, he would gain by taking away some of it from the second and applying it to the first”.

According to this law the consumer has to distribute his money income on different uses in such a manner that the last rupee spent on each commodity gives him the same marginal utility. Equalisation of marginal utility in different uses will maximise his total satisfaction. Hence this law is known as “law of equi-marginal utility”.

Assumptions of the law : The law of equi-marginal utility depends on the following assumptions.

  1. This law is based on cardinal measurement of utility.
  2. Consumer is a national man always aiming at maximum satisfaction.
  3. The marginal utility of money remains constant.
  4. Consumer’s income is limited and he is proposed to spent the entire amount on different goods.
  5. The price of goods are unchanged.
  6. Utility derived from one commodity is independent of the utility of the other commodity.

The fundamental condition for consumer’s equilibrium can be explained in the following way.
\(\frac{\mathrm{MU}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{x}}}=\frac{\mathrm{MU}_{\mathrm{y}}}{\mathrm{P}_{\mathrm{y}}}=\frac{\mathrm{MU}_{\mathrm{z}}}{\mathrm{P}_{\mathrm{z}}}\) = MUm
Where MUx, MUy, MUx, MUm = marginal utility of commodities X, Y, Z, m;
Px, Py, Pz = prices of x, y, z.
This law can be explained with the help of a table. Suppose the consumer is prepared to spend his money income is ₹ 26/- on two goods x and y. Market prices of two goods are ₹ 4/- & ₹ 5/- respectively. Now the marginal utilities of goods x & y are shown below.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 5
For explaining consumer’s maximum satisfaction and consequent equilibrum position we need to reconstruct the above table by dividing marginal utilities of x its price ₹ 4/- and marginal utility of y by ₹ 5/-. This is shown in the following table.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 6
In the table it is clear that when consumer purchase 4 units of goods x & 2 units of good y. Therefore, consumer will be in equilibrium when he is spending (4 × 4 = 16 + 2 × 5 = 10) ₹ 26 on them.

Consumer’s equilibrium may be shown in the diagram.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 7
Consumer’s equilibrium by using principle of equi-marginal utility

In the diagram marginal utility curves of goods slope downwards i.e. AB & CD taking of the income of the consumer as given, suppose his M>U of money constant at OE. \(\frac{\mathrm{MU}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{x}}}\) is equal to OE when OG quantity of good X is brought. \(\frac{\mathrm{MU}_{\mathrm{y}}}{\mathrm{P}_{\mathrm{y}}}\) is equal to OE, when OF quantity of good y is purchased. Thus consumer purchasing OG of X and OF of Y. \(\frac{\mathrm{MU}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{x}}}=\frac{\mathrm{MU}_{\mathrm{y}}}{\mathrm{P}_{\mathrm{y}}}\) = MUm. This is consumer’s equilibrium.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 4.
Explain the consumer’s equilibrium using indifference curve.
Answer:
The point where the consumer gets maximum possible satisfaction, where the budget line is tangent to the indifference curve and the MRS is equal to the price ratio of the two goods will be defined as equilibrium of the consumer.
Assumptions :

  1. Consumer scale of preferences must remain constant.
  2. Money income of thfe consumer must remain constant.
  3. The price of two goods must remain unchanged.
  4. There should be no change in the tastes and habits of the consumer.
  5. The consumer is rational and thus maximises his satisfaction.

Conditions of equilibrium : There are two conditions that must be satisifed for the consumer to be in equilibrium. They are :

  1. At the point of equilibrium, the budget / price line must be tangent to the indifference curve.
  2. At the point of equilibrium, the consumer’s MRSxy and the price ratio must be equal.
    i.e„ MRSxy = \(\frac{P_x}{P_y}\)

This can be shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 8
In the diagram ‘AB’ is consumer’s budget or price line. IC, IC1, IC2 are indifference curves. In the diagram the consumer is equilibrium OM of x and ON of y. At point E the price line touches to an IC1. At point ‘S’ consumer will be on ‘O’ lower indifference curve IC and will be getting less satisfaction than at E on IC. IC2 is beyond the capacity of consumer. So it is outside to the budget line.

Question 5.
Define price line / budget line and explain shifts in the budget line.
Answer:
The budget line or price line shows all possible combinations of two goods that a consumer can buy with the given income of the consumer and prices of the two goods.

The concept of budget / price line will be shown in the following example. Suppose that a consumer has ₹ 150 (income) to buy two goods namely X and Y. Whose prices are ₹ 15 and ₹ 30 each. With the given information now we can draw the budget or price line as shown in the diagram.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 9
In the above diagram ‘AB’ is the ‘budget or price line’. The slope of the line AB represents the ratio of the prices of X and Y in such a manner that 10 of x will be equal to 5 of y.

Shifts in the Budget line : The position of the budget line depends upon size of money income of the consumer. If his income increase and the price of the two commodities remaining the same, the consumer can buy more of both the commodities. On the other hand, if his income decreases, the prices of the two commodities remaining the same the consumer now to reduce his purchase. As a result of changes in the consumer income, there will be shifts in budget line also. The same is shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 10

  1. When the income of the consumer increase, the budget line moves towards right from the original to AB to A’B’.
  2. When the income of the consumer decrease, the budget line moves to the left from the original / initial AB to A”B”.

Change in price line : The slope of the price line depends on the prices of both the commodities there will be a change in the slope of the price line when there is a change in the price or either of the two commodities.
i) Suppose that the price of ‘X’ falls, while the price of Y and money income of the consumer remaining the same.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 11
In the above diagram, the initial price line of AB, before change in the price of X’. Suppose that the price of X’ has fallen and the price of ‘Y’ remaining the same.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

ii) Suppose that the price Y falls, while the price of X and money income of the consumer re-maining the same.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 12
In the above diagram, the initial line is AB that is before a change in price of Y.

Short Answer Questions

Question 1.
Difference between cardinal and ordinal utility.
Answer:
The concept of utility was introduce by Benham in 1789. Utility means want satisfying power of a commodity. It is a psychological phenomenon. The measurement of utility, there are two different approaches.

  1. Cardinal utility
  2. Ordinal utility

1) Cardinal utility : This approach was developed by Alfred Marshall. According to him utility is psychological concept. So it can be measured ‘util’. The numbers 1, 2, 3, 4 etc are cardinal numbers. According to this analysis the utilities derived from consumption of different commodities can be measured in terms of arbitary units, such as 1, 2, 3 … and so on.

2) Ordinal utility : This approach was developed by R.J.D. Allen and J.R.Hicks. According to them utility is psychological concept. So we cannot measure in numerically much less compared. The numbers 1st, 2nd, 3rd, 4th etc., are ordinal numbers. The ordinal numbers are ranked. It means the utilities obtained by the consumer from different goods can be arranged in a serial order such as 1st, 2nd, 3rd, 4th etc.

Question 2.
Properties of IC (Indifference curves). [March 18, 17, 16]
Answer:
The important properties of indifference curves are :

  1. Indifference curves slopes downwards from left to right there exists negative slope.
  2. Indifference curves are convex to the origin because of diminishing marginal rate of substitution.
  3. Indifference curves can never intersect each other.
  4. Higher indifference curve represent higher level of satisfaction. Indifference curve to the right represents higher satisfaction.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 3.
Marginal Rate of Substitution
Answer:
The concept of MRS (Marginal Rate of Substitution) is the basis of indifference curves. The MRS may be defined as the rate at which an individual will exchange successive unity of one commodity for another. This can be explained with the help of following example.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 13
From the table it is clear that consumer has 15 units of good Y and 1 of good X, he is willing to forego 4Y for IX. Here marginal rate of substitution of X for Y is 4 :1 and for 3rd combination it is 3 : 1 and so on. The MRS xy diminishes as the consumer goes on substituting X for Y.
MRSxy = \(\frac{\Delta Y}{\Delta X}\)

Question 4.
Indifference Map
Answer:
A set of indifference curves drawn for different income levels is called as “indifference map”. In other words indifference map is the locus of various indifference curves various levels of satisfaction to the consumer.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 14
From the above diagram it is clear that an indifference map of IC1, IC2, IC2. Each curve shows a certain level of satisfaction to the consumer: The different indifference curves are always arranged and numbered in ascending order.

As are moves from IC1 to IC3 on an indifference map, the IC labelled higher number (IC3) is preferred to the IC labelled lower number (IC1).

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 5.
Price Line.
Answer:
The budget / price line shows all possible combinations of two goods that a consumer can buy, with given income of the consumer and prices of the two goods. But which particular combination of two goods on IC he can get depends on two factors.

  1. Consumer’s money income
  2. Prices of two goods.

The concept of budget / price line will be shown in the following diagram.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 15
In the above diagram PL is Budget line. If consumer spend his total income on good X, he could get L. Any point outside the given price line H will beyond the capacity of consumer, K is under spending Capacity.

The concept of price line or budget line can be known the following example. Suppose the consumer has ₹ 5/- to buy two goods say X and Y prices of X and Y are ₹ 1/- and 0.50 paisa. Then the following are the opportunities available before him.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 16

  1. If consumer spends his total amount of ₹ 5 on X only he gets 5 units of X and none of Y.
  2. If he spends whole of his money i.e., ₹ 5 on Y only he gets 10 units of Y and none of X.
  3. If consumer wants to have both X & Y. Therefore he can move within OAB of price line.

Additional Questions

Question 6.
Explain the importance of law of equi-marginal utility.
Answer:
The law of equi-marginal utility states that a consumer will be in equilibrium when the marginal utility of the various commodity are equal.
Importance :

  1. Basis of consumer expenditure : It is basis for consumers expenditure and guide the consumers while allocating resources.
  2. In the field of production : This law is useful to the producer and it explains how a producer maximises his profits and reduces cost of production.
  3. Exchange : In all our exchanges, this law works, for exchange is nothing but substitution of one thing for another.
  4. Public Finance : This law helps the government in the allocation of scarce resources and also the government levied taxes on the basis of this principle.
  5. Price determination : This principle has an important bearing on the determination of value.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 7.
Explain superiority of the indifference curve technique.
Answer:

  1. It is an analysis of multi-goods model.
  2. It does not assume marginal utility of money remains constant.
  3. It analyses income effect, price effect and substitution effect.
  4. The assumption of ordinal measurement of utility made by indifference curve is less restrictive and more realistic.

Question 8.
What are the important assumptions of indifference techniques ?
Answer:
An indifference curve represents satisfaction of a consumer from two commodities. An IC curve can defined as the locus of points each representing a different combination of two goods yielding the same level of satisfaction.
Assumptions :

  1. Rationality: It is assumed that the consumer tries to obtain maximum satisfaction from his expenditure.
  2. Scale of preference : Consumer is able to arrange the available combinations of goods according to scale of preference.
  3. Ordinal utility : It assumes ordinal utility approach. So utility measurable only ordinal terms i.e., 1st, 2nd, 3rd ………… etc.
  4. Diminishing marginal rate of substitution : It is the rate at which a consumer is willing to substitute commodity to another. So that this satisfaction remains the same.
  5. Consistency : Consumer’s choices have to consistent. It means if consumer prefers A to B and B to C his choice reflects his rationality.
  6. Completeness : The consumer’s scale of preferences is to complete that he is able to choose any one of the two combinations of commodities presented to him.

Very Short Answer Questions

Question 1.
Utility
Answer:
The want satisfying power or capacity of a commodity or service is known as utility. It is the basis of consumer’s demand for a commodity.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 2.
Cardinal utility [March 17]
Answer:
Alfred Marshall developed cardinal utility analysis. According to this analysis the utilities derived from consumption of different commodities can be measured in terms of arbitary units called utils. 1, 2, 3, 4 are called cardinal numbers.

Question 3.
Ordinal utility
Answer:
This was developed by J.R.Hicks, Allen. Utility is subjective and measurement of utility in numerical terms is not possible. We can observe the preference one for a good more than for another. Ordinal numbers such as 1st, 2nd, 3rd ………….. etc. The ordinal numbers are ranked.

Question 4.
Scale of preferences
Answer:
Guides the consumer in his purchases. It reflects his tastes and preferences.

Question 5.
Price Line [March 16]
Answer:
It shows all possible combinations of two goods that a consumer can buy, with the given income of the consumer’s and prices of the two goods.

Question 6.
MRS
Answer:
The additional amount of one product required to compensate a consumer for a small decrease in the quantity of another, per unit of the decrease.

Additional Questions

Question 7.
Total utility
Answer:
Total utility is the total amount of utility which a consumer derives from a given stock of a commodity.
TUn = f(Qn)

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 8.
Marginal utility
Answer:
Marginal utility is the additional utility obtained from the consumption of additional unit of the commodity.
MUn = TUn – TU(n-1)
(or)
MU = \(\frac{\Delta \mathrm{TU}}{\Delta \mathrm{Q}}\)

Question 9.
Consumers equilibrium
Answer:
The term equilibrium implies a position of rest or changelessness. A consumer attains equilibrium only when he secures maximum satisfaction out of his expenditure. In distributing a commodity various uses, the consumer will secure maximum satisfaction if the marginal utility of the commodity equalised in all its uses.
\(\frac{\mathrm{MU}_{\mathrm{x}}}{\mathrm{P}_{\mathrm{x}}}=\frac{\mathrm{MU}_{\mathrm{y}}}{\mathrm{P}_{\mathrm{y}}}\) ………… and ao on.

Question 10.
Indifference curve
Answer:
It represents the satisfaction of a consumer from two goods of various combinations. It is drawn on the assumption that for all possible combinations of the two goods on an indifference curve, the satisfaction level remains the same.

Question 11.
Iso-utility curve
Answer:
Iso-utility curve is also known as indifference curve or the curve of equal utility. The situation where consumers yield the same level of total satisfaction at various combinations of the commodities called Iso-utility curve.

AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour

Question 12.
Indifference schedule
Answer:
It is a table representing the various combinations of goods which give equal satisfaction to the consumer. An indifference curve is drawn on the basis of an “indifference schedule”.

Question 13.
Indifference map
Answer:
A set of indifference curves drawn for different income levels is called indifference map.
AP Inter 1st Year Economics Study Material Chapter 2 Theory of Consumers Behaviour 17
From the above diagram it is clear that an indifference map of IC1, IC2, IC3. Each curve shows a certain level of satisfaction to the consumer.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Andhra Pradesh BIEAP AP Inter 1st Year Economics Study Material 1st Lesson Introduction Textbook Questions and Answers.

AP Inter 1st Year Economics Study Material 1st Lesson Introduction

Essay Questions

Question 1.
Discuss Wealth definition.
Answer:
Adam Smith was the first person to give a precise definition of Economics and separate this study from other social sciences. Adam Smith is considered as ‘Father of Economics’. He defined it in his famous book Wealth of Nations’, as “An enquiry into the nature and causes of wealth of nations”. Most of the economists in the 19th century held this view.

J.B. Say states that “The aim of political economy is to show the way in which wealth is produced, distributed and consumed”. The other economists who supported this definition are J.B. Say, J.S.Mill, Walker and others.
The main features of Wealth definition :

  1. Acquisition of wealth is considered as the main objective of human activity.
  2. Wealth means material things.
  3. Human beings are guided by self-interest, whose objective is to accumulate more and more wealth.

Criticism : The wealth definition was severely criticised by many writers due to its defects.

  1. Economists like Carlyled and Ruskin pointed out that economics must discuss ordinary man’s activities. So they called it as a ‘Dismal Science’.
  2. Adam Smith’s definition, wealth was considered to consist of only material things and services are not included. Due to this the scope of economics is limited.
  3. Marshall pointed out wealth is only a means to an end but not an end in itself.
  4. This definition concentrated mainly on the production side and neglected distributed side.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 2.
Explain Welfare definition.
Answer:
Alfred Marshall tried to remedy the defects of wealth definition in 1890. He shifted emphasis from production of wealth to distribution of wealth.

According to Marshall “Political economy or Economics is a study of mankind in the : ordinary business of life. It examines that part of individual and social action which is most closely connected with the attainment and with the use of material requisites of well-being. Thus Economics is on one side, a study of wealth and on the other and more important side, a part of study of man”.

Edwin Cannan defined it as “The aim of political economy is the explanation of the general causes on which the material welfare of human beings depends”.

In the words of Pigou “The range of enquiry becomes restricted to that part of social welfare that can be brought directly or indirectly into relation with the measuring rod of money”.

The main features of Welfare definition :

  1. Economics as a social science is concerned with man’s ordinary business of life.
  2. Economics studies only economic aspects of human life and it has no concern with the social, political and religious aspects of human life. It examines that part of individual and social action which is closely connected with acquisition and use of material wealth for promotion of human welfare.
  3. According to Marshall, the activities which contribute to material welfare are considered as economic activities.
  4. He gave primary importance to man and his welfare and to wealth as means for the promotion of human welfare.

Criticism:

  1. Robbins criticised Marshall’s economics is a ‘social science’ rather than a human science, which includes the study of actions of every human being.
  2. Marshall’s definition mainly concentrated on the welfare derived from material things only. But non – materialistic goods which are also’ very important for the well being of the people. Hence, it is incomplete.
  3. Critics pointed out that quantitative measurement of welfare is not possible. Welfare is a subjective concept and changes according to time, place and persons.
  4. According to Marshall, economics deals with those activities of men which will promote human welfare. But production of alcohol and drugs do not promote human welfare. Hence the scope of economics is limited.
  5. Another important criticism is that it is not concerned with the fundamental problem of scarcity of resources.
  6. According to Robbins the economic problem arises due to unlimited wants and limited resources. These factors are ignored in this definition.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 3.
Explain how Robbings definition is superior to the welfare definition.
Answer:
Lionel Robbin’s of London School of Economics introduced the ‘Scarcity’ definition of Economics, in his book.

‘An Essay on the nature and significance of Economic Science’.

According to Robbin’s “Economics is the science which studies human behaviour as a relationship between ends and scarce means which have alternative uses”. Scarcity of resources is the central idea in Robbin’s definition.
Main features of Robbin’s definition :

  1. Unlimited wants or ends
  2. Means are scarce or limited
  3. Means have alternative uses
  4. Problem of choice.

Welfare definition: According to Marshall “Economics is on one side a study of wealth and on the other and more important side a part of study of man.” Marshall in his definition gave more importance to man than wealth.

Marshall defined “Political economy or Economics is a study of mankind in the ordinary business of life, it examines that part of individual and social action which is most closely connected with the attainment and with the use of the material requisites of well-being.

Main features of welfare definition :

  1. He assumed that Economics must be a science which is study of man kind in the ordinary business of life.
  2. Economics is concerned with real man influenced by human considerations and it has no concern with the political, social and religious aspects of life.
  3. Wealth is a means for promoting human welfare, i 4) The main emphasis of Marshall is on material welfare and the immaterial aspects are ignored.

Superiority of Robbin’s definition over Marshall’s definition :

  1. According to Marshall “Economics Studies the activities of those people who live in society”. But Robbin’s says that Economics studies, all human activities whether they promote human welfare or not.
  2. According to Marshall “The scope of Economics is limited. But Robbin’s the scope of Economics is wide”.
  3. Robbin’s definition has universal applicability. Because it is applicable to all types of societies.
  4. Robbin’s definition of Economics is neutral between ends. He made economics a positive science. It does not pass value judgements.

Question 4.
Define Prof. Samuelson’s growth definition.
Answer:
Robbin’s definition does not take into consideration the dynamic problem of economic growth. As the time passes the scarcity of means ends, targets choices undergo a change. The inherent defect of Robbins definition has been rectified by Paul Samuelson in his definition of Economics.

Prof. Paul Samuelson, a Nobel Prize winner of 1970 provided a new definition of economics in which he introduced time element and it is dynamic in nature. Therefore his definition is known as growth oriented definition.

According to Samuelson “Economics is the study of how people and society choosing with or without the use of money, to employ scarce productive resources that could have alternative use to produce various commodities and distribute them for consumption. Now or in the future among various persons and groups in society.
Important features of the definition :

  1. Scarcity : Like Robbins, Samuelson emphasises the scarcity of resources, unlimited wants and the alternative uses for the means.
  2. Dynamism : Samuelson’s definition is dynamic. He talks about production, distribution and consumption in the present and also in the future.
  3. Wide Scope : This definition widen the scope of Economics. It deals with problems of choice in a dynamic society.
  4. Economic growth : He gave importance to economic growth the future consumption is safeguard by productive investment which leads to economic growth.

Thus Samuelson definition of economics is considered to be the most satisfactory definition of economics as it clearly states.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 5.
Distinguish between “Micro” and “Macro Economics”.
Answer:
Modem economic theory divided it into two branches, namely (i) Micro Economics (ii) Macro Economics. Ragnar Frisch was the first economist to use the words “Micro and Macro” in economic theory in 1930.

Micro Economics : The term “Micro Economics” is derived from the Greek word MIKROS’ which means small. Thus micro economics is the theory of small. It was developed by classical economists like Adam Smith, J.B.Say, J.S.Mill, Ricardo, Marshall etc. It studies about individual units or behaviour of that particular units like individual income, price, demand etc. Micro Economics is also known as partial analysis. If main, concentrates on the determination of prices of commodities and factors of production. It is also known as “Price theory”. According to K.E. Boulding Micro Economics is the study of particular firms, particular households, individual prices, wages, incomes individual industries and particular commodities.

Shapiro says “Micro Economics has got relation with small segments of the society.
Macro Economics : The term Macro Economics is derived from the Greek word ‘MAKROS’ which means large. Thus Macro Economics is the study of economic system as a whole. It was developed by J.M. Keynes. It studies aggregates in the economy like national income, total consumption, total saving and total employment etc. It is also known as Income and Employment theory.

According to Boulding “Macro Economics studies National Income not Individual income, general price level instead of individual prices and national output instead of individual output. Macro Economics also studies the economic problems like poverty, unemployment, economic growth, development etc. It is also deals with the theory of distribution.

The difference between Micro Econoinics and Macro Economics : Micro and Macro Economics are interrelated to each other. Inspite of close relationship between the two branches of economics, fundamentally they differ from each other.

Micro Economics

  1. The word micro derived from the greek word ‘ Mikros’ means “small”.
  2. Micro Economics is the study of individual units of the economy.
  3. It is known as Price theory.
  4. Micro Economics explains price determination both commodity and factor markets.
  5. Micro Economics is based on price mechanism which depends on demand and supply.

Macro Economics

  1. The word macro derived from the greek word ‘Makros’ which means large”.
  2. Macro Economics is the study of economy as a whole.
  3. It is known as Income and Employment theory.
  4. Macro Economics deals with national income, total employment, general price level and economic growth.
  5. Macro Economics based on aggregate demand. and aggregate supply.

Short Answer Questions

Question 1.
Free goods and Economic goods.
Answer:
Free goods

  1. Free goods are nature’s gift.
    Ex : Air, Sunshine etc.
  2. Their supply is abundant.
  3. They do not have price.
  4. These goods don’t have cost of production.
  5. Free goods have only value in use.
  6. These goods are not included in National Income.

Economic goods

  1. Economic goods are man made.
    Ex: Book, Pen etc.
  2. Supply is always less than their demand.
  3. These goods command price.
  4. Economic goods have cost of production.
  5. Economic goods have both use value and exchange value.
  6. Economic goods are included in National Income.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 2.
Characteristics of Wants. [March 18, 17, 16]
Answer:
Human wants are starting point of all economic activities. They depend on social and economic conditions of individuals.
Characteristic features of wants :
1) Unlimited wants : Human wants are unlimited. There is no end to human wants. When one want is satisfied another want takes its place. Wants differ from person to person, time to time and place to place.

2) A particular want is satiable : Although a man cannot satisfy all his wants, a particular want can be satisfied completely in a period of time.
Ex: If a person is thirsty he can satisfy it by drinking a glass of water.

3) Competition : Human wants unlimited. But the means to satisfy them are limited of scarce. Therefore they complete with each other in priority of satisfaction.

4) Complementary: To satisfy a particular want we need a group of commodities at the same time.
Ex: Writing need is satisfied only when we have pen, ink and paper together.

5) Substitution : Most of our wants can be satisfied by different ways.
Ex : If we feel hungry, we take some food and satisfy this want.

6) Recurring : Many wants appear again and again thought they are satisfied at one point of time.

7) Habits : Wants change into habits, which cannot be given up easily.
Ex : Smoking cigarettes for joke results into a habit if it is not controlled.

8) Wants vary with time, place and person : Wants go on changing with the passage of time. They are changing from time to time, place to place and person to person. Human wants are divided into 1. Necessities, 2. Comforts and 3. Luxuries.

Question 3.
Various types of utility.
Answer:
The want satisfying capacity of a commodity at a point of time is known as utility.
Types of utility:
1) Form utility: Form utilities are created by changing the shape, size and colour etc., of a commodity so as to increase its want satisfying power.
Ex : Conversion of a wooden log into a chair.

2) Place utility : By changing the place some goods acquire utility.
Ex : Sand on the sea shore has no utility. If it is brought out and transported to market, it gains utility. This is place utility.

3) Time utility : Time utilities are created by storage facility.
Ex : Business men store food grains in the stock points in the off season and releases them to markets to meet high demand and obtained super normal profits.

4) Service utility : Services also have the capacity to satisfy human wants.
Ex: Services of Lawyer, Teacher, Doctor etc. These services directly satisfy human wants.
Hence they are called as service utilities.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 4.
Jacob Viner’s definition. [March 18, 17, 16]
Answer:
Jacob Viner’s-definition of Economics is considered as modem definition of Economics. He is an American economist known for his short run and longrun cost curve analysis. According to Jacob Yiner “Economics is what economists do”.
The problems of the economy are :

  1. What to produce and in what quantities : The economy has to decide whether to produce consumer goods and capital goods. These decisions are influence by individuals as well as government.
  2. How to produce these goods : A decision has to be made whether to use labour intensive or capital intensive techniques.
  3. For whom to produce these goods and services: It is concerned with the distribution of income and wealth among different sections of the society.
  4. How efficient the productive resources are in use : This refers to the efficiency of economic system.
  5. Whether the available resources are fully utilised : If resources are fully utilised that it can provide more employment opportunities.
  6. Is the economy growing or static over a period of time.

Question 5.
Various economic investigations.
Answer:
According to Peterson “The term method refers to the techniques and producers used by economists for both construction and verification economic principles. There are plainly two methods used by the economists for conducting economic investigations. They are :

  1. Deductive method
  2. Inductive method.

1. Deductive method : This method is also known as the analytical and abstract method. The method of studying phenomenon by taking same assumptions and deducing conclusions from those assumptions is known as the deductive method. It proceeds from general to the particular or from universal to the individual. This was advocated by economists belonging to the classical school. There are four steps involved in drawing inference through deductive method. They are :

  1. Selecting the problem
  2. Formulating assumptions
  3. Formulating hypothesis
  4. Verifying the hypothesis.

The law of diminishing marginal utility is one law derived using this deductive method.
Merits of deduction:

  1. It is less expensive and less time consuming.
  2. It analyses complex economic phenomena and bring exactness to economic generalizations.
  3. It helps in laying down basic principles of human behaviour.

Inspite of the above stated advantages, it is not free from limitations. It is based on unrealistic assumptions with little empirical content.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

2. Inductive method : This method is also known as Historical, Empirical, Concrete, Ethical or Realistic. This method was strongly advocated and made use of by economists belonging to the historical school. This method proceeds from a part to the whole from particular to general or from the individual to the universal.
The following are the important steps involved in deriving economic generalisations through inductive method.

  1. Selection of the problem
  2. Collection of data
  3. Observation
  4. Generalisation

Merits of induction method :

  1. It is nearer to reality and therefore expected to depict reality.
  2. This method involves less chances of mistakes.

Inspite of several advantages it has its own defects. This method is expensive and consuming. It can be used by those who possess skill and competance in handling ex data.

Additional Questions

Question 6.
What is meant by Micro Economics ? Discuss its importance.
Answer:
The tehn ‘Micro Economics’ is derived from the greek word ‘MIKROS’ which means ‘small’. Thus Micro Economics deals with individual units like individual demand, price, supply etc. It was popularised by Marshall. It is also called as ‘Price Theory’ because it explains pricing in product market as well as factor market.
Importance :

  1. Micro Economics provides the basis for understanding the working of the economy as a whole.
  2. This study is useful to the government to frame suitable policies to active economic growth and stability.
  3. This study is applicable to the field of international trade in the determination of exchange rates.
  4. Micro Economics provides an analytical tool for evaluating the economic policies of the government.
  5. It can be used to examine the condition of economic welfare and it suggests ways and means to bring about maximum social welfare.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 7.
What is meant by Macro Economics ? Discuss its importance.
Answer:
The term Macro Economics is derived from the greek word ‘MAKROS’ which means large. It was developed by j.M.Keynes. Macro Economics deals with economic system as a while like national income, aggregate demand, aggregate supply, general price level etc. It is also known as ‘Income and Employment’ theory.
Importance :

  1. Macro Economics study is more useful to the government for formulation and execution of policies for achievement of maximum social benefit.
  2. It helps in understanding the problems of unemployment poverty, inflation etc, and suggests has to solve them.
  3. It gives us a picture of the working of the economy as a whole;
  4. The study of Macro Economics is helpful in analysing the causes of business cycles and in providing-remedies.
  5. Macro Economics includes economic growth and suggests how developing countries can use their resources to maximise their growth.
  6. Macro Economic study is useful for making international comparisons in terms of average national income.

Question 8.
Explain the circular flow of income with suitable diagram.
Answer:
Income is a flow over a period of time. Income flow is of circular in character. Where beginning and end cannot be traced. National output originates in private and public sectors. It moves to the households. The household is the basic consuming unit in economic life. In every economy income flows from households to firms and vice versa. Thus the factor market and the product market are closely related to each other.

The circular flow of income can be explained with the help of the following diagram.
AP Inter 1st Year Economics Study Material Chapter 1 Introduction 1
According to the above diagram, it is clear that the factor market and commodity market are closely related to one another.

The households supply the resource services and receives in returm payment interms of money. Thus money flows from producing units to households. The household exchange that money for goods and services they want. As a result the money flows from households to firms. Thus there is a circular flow of income and output.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 9.
Explain the differences between Consumer goods and Capital goods.
Answer:
Anything that can satisfy a human want is called a good. Goods can be classified into two types namely,

  1. Free goods
  2. Economic goods.

Further the economic goods divided into two types namely :

  1. Consumer goods
  2. Capital goods or Producer goods.

1) Consumer goods: A consumer good is an economic good or commodity purchased by households for final consumption. Thus these goods satisfy human wants directly.
Ex : Foods, books etc.
Consumer goods further divided into two types.
a) Perishable goods
b) Durable goods
a) Perishable goods : They lose their value in single use.
Ex : Milk, fruits etc.
b) Durable goods: These goods which yields service over period of time. Hence utility from these goods can be derive’d for a long time.
Ex : T.Vs & Computers.

2) Producer or Capital goods: Goods which are used in the production of other goods -lied producer or capital goods. They satisfy human wants indirectly.
Ex : Machines, buildings etc.
Differences between Consumer goods and Capital goods.
Consumer goods

  1. These goods satisfy human wants directly. Ex: Milk, fruits etc.
  2. They have direct demand.
  3. These are the goods of first order.
  4. They are net used in the production process of other goods.
  5. They yield utility to the owners of these goods.

Capital goods

  1. These goods satisfy human wants indirectly. Ex: Machines, raw-materials.
  2. They have indirect or derived demand.
  3. These are the goods of second order.
  4. These are used in the production process of other goods.
  5. They yield income to the owners of these goods.

Very Short Answer Questions

Question 1.
Economic goods
Answer:
Economic goods are man-made, they have cost of production and price. They are limited in supply. They have both value in use and value in exchange.
Ex : Pen, Book etc.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 2.
Capital goods
Answer:
Goods which are used in the production of other goods are called producer or capital goods. They satisfy human wants indirectly.
Ex : Machines, tools, buildings etc.

Question 3.
Intermediary goods [March 17]
Answer:
Goods which are under the process of production and semi finished goods are known as intermediary goods.
Ex : Cotton and fibre etc.

Question 4.
Wealth [March 18, 16]
Answer:
Wealth means stock of assets held by an individual or institution that yields has the potential for yielding income in some form. Wealth includes money, shares of companies, land etc. Wealth has three properties. 1. Utility 2. Scarcity 3. Transferability

Question 5.
Income
Ans. Income is a flow of satisfaction from wealth per unit of time. In every economy income’ flows from households to firms and vice versa. Income can be expressed in two types.

  1. Money income which is in terms of money.
  2. Real income which is in terms of goods and services.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 6.
Utility [March 16]
Answer:
Utility is the wants satisfying capacity of goods and services. It is a subjective concept. No one can measure it in mathematical terms.

Question 7.
Exchange value
Answer:
Exchange value is the purchasing power of one commodity to another. All economic goods have exchange value.

Question 8.
Price [March 18, 17]
Answer:
The price of anything is its value measured in terms of money.
Ex: A commodity is exchanged for 50 rupees then the price of commodity is 50 rupees.

Question 9.
Choice problem
Answer:
The choice problem is the central problem of Economics. The problems of the economy “What to produce ? How to produce” ? The problem of choice between commodities and the problem of choice of production techniques respectively.

Question 10.
Deductive Method
Answer:
Deductive method is the process from general to particular or from the universal to the individual.

Question 11.
Inductive method
Answer:
It is the process from particular to general or from the individual to the universal.
Economic statistics : It refers to the functional relationship between the two variables whose values are related to the same point. This concept was introduced by J.S. Mill.

AP Inter 1st Year Economics Study Material Chapter 1 Introduction

Question 13.
Economic dynamics
Answer:
J.S. Mill introduced this concept in Economics. It refers to the analysis where the functional relationship is established between relevant variables whose values belong to different point of time.

Question 14.
Partial equilibrium
Answer:
It was popularised by Marshall. It exists when an equilibrium relates to a single variable.

Question 15.
General equilibrium
Answer:
This concept was popularised by Leon Walras. General equilibrium exists when an equilibrium relates to number of variables or even the economy as a whole.

Question 16.
Micro Economics
Ans. The word ‘Micro’ derived from Greek word ‘Mikros’ which means ‘small’. It was developed by Marshall. It is the study of the individual units like individual demand, price, supply etc.

Question 17.
Macro Economics
Answer:
The word ‘Macro’ derived from Greek word ‘Makros’ which means large. It was developed by J.M. Keynes. It studies aggregates or economy as a whole like national income, employment, general price level etc. It is also called “Income and Employment” theory.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Andhra Pradesh BIEAP AP Inter 1st Year Physics Study Material 14th Lesson Kinetic Theory Textbook Questions and Answers.

AP Inter 1st Year Physics Study Material 14th Lesson Kinetic Theory

Very Short Answer Questions

Question 1.
Define mean free path. [A.P. Mar. 18, 17, 15; T.S. Mar. 17, 15]
Answer:
The average distance covered by a molecule between two successive collisions is called the mean free path.

Question 2.
How does kinetic theory justify Avogadro’s hypothesis and show that Avogadro Number in different gases is same ?
Answer:
For two different gases, we have \(\frac{P_1 V_1}{N_1 T_1}=\frac{P_2 V_2}{N_2 T_2}\) = KB (constant)
If P, V, T are same, then N is also same for two gases.
N is called Avogadro’s number. According to Avogadro’s hypothesis, that the number of molecules per unit volume is same for all gases at a fixed temperature and pressure.
In this way kinetic theory justify Avogadro’s hypothesis.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 3.
When does a real gas behave like an ideal gas ? [T.S. Mar. 16; Mar. 14]
Answer:
At low pressures and high temperatures real gases behave like an ideal gas.

Question 4.
State Boyle’s Law and Charle’s Law. [A.P. Mar. 18; T.S. Mar. 15]
Answer:
Boyle’s law : At constant temperature, the pressure of a given mass of gas varies inversely with volume.
Charle’s law: At constant pressure, the volume of the gas is proportional to its absolute temperature.

Question 5.
State Dalton’s law of partial pressures. [T.S. Mar. 18; A.P. Mar. 16; Mar. 14]
Answer:
The total pressure exerted by a mixture of non-reacting gases occupying a vessel is equal to the sum of the individual pressures which each gas would exert if it is alone occupied the whole vessel.
i.e., P = P1 + P2 + ………….

Question 6.
Pressure of an ideal gas in container is independent of shape of the container – explain. [T.S. Mar. 17]
Answer:
The kinetic theory expression for the pressure of a given mass of an ideal gas in a container is 1 -2.
P = \(\frac{1}{3}\) nm\(\bar{v}^2\), where \(\overline{\mathrm{V}}\) indicates mean-square-speed, n is number of molecules, m is mass of molecule. From the above equation, shape of the container is immeterial. Hence pressure of an ideal gas is independent of shape of the container.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 7.
Explain the concept of degrees of freedom for molecules of a gas.
Answer:
The degrees of freedom of a particle indicate the number of independent motions which the particle can undergo, or the number of independent methods of exchanging energy.

A monoatomic molecule (He) has three degrees of freedom, a diatomic (H2, O2) one has five, while a triatomic (H2O) one has six.

Question 8.
What is the expression between pressure and kinetic energy of a gas molecules ? [AP – Mar. ’17, ’16, ’15]
Answer:
By kinetic theory pressure, P = \(\frac{1}{3} m n \overline{V}^2\) and kinetic energy = \(\frac{1}{2} m n \overline{V}^2\) where m is the mass of the molecules, n is the number of moles per unit volume, v is the mean-square-speed.
∴ P = \(\frac{2}{3}\left(\frac{1}{2} m n \overline{V}^2\right)\) = \(\frac{2}{3}\) (kineticenergy)

Question 9.
The absolute temperature of a gas is increased 3 times. What will be the increase in rms velocity of the gas molecule ?
Answer:
Case (i) : The r.m.s velocity of gas molecule, \(\overline{V}_1=\sqrt{\frac{3 R T_1}{M}}\)
Case (ii) : The r.m.s velocity of gas molecule, \(\overline{V}_2=\sqrt{\frac{3 R T_2}{M}}\)
\(\frac{\overline{\mathrm{V}}_2}{\overline{\mathrm{V}}_1}=\sqrt{\frac{\mathrm{T}_2}{\mathrm{~T}_1}}=\sqrt{\frac{3 \mathrm{~T}_1}{\mathrm{~T}_1}}\)  [∵ T2 = 3T1] ⇒ \(\overline{\mathrm{V}}_2=\sqrt{3} \overline{\mathrm{V}}_1=1.732 \overline{\mathrm{V}}_1\)
∴ Increase in r.m.s velocity of gas molecule = \(\overline{\mathrm{V}}_2-\overline{\mathrm{V}}_1=1.732 \overline{\mathrm{V}}_1-\overline{\mathrm{V}}_1=0.732 \overline{\mathrm{V}}_1\)

Short Answer Questions

Question 1.
Explain the kinetic interpretation of Temperature.
Answer:
Kinetic interpretation of Temperature : Since the pressure of the gas is given by
P = \(\frac{1}{3} \mathrm{mn} \overline{\mathrm{V}}^2\), where m = mass of the gas, n = \(\frac{\mathrm{N}}{\mathrm{V}}\) = Number of molecules per unit volume
\(\overline{V}\) = r.m.s velocity of gas, P = \(\frac{1}{3} m \frac{N}{V} \overline{V}^2\) ⇒ PV = \(\frac{1}{3} \mathrm{mN} \overline{\mathrm{V}}^2\)
Also for a gram molecule of the gas, PV = RT
Hence RT = \(\frac{1}{3} m N \overline{V}^2 \Rightarrow 3 \frac{R T}{N}=m \overline{V}^2 \text { or } \frac{1}{2} m \overline{V}^2=\frac{3}{2} K_B T\) [∵ \(\frac{R}{N}\) = KB]
Here KB is Boltzman constant. So mean kinetic energy of a molecule is \(\frac{3}{2}\) KB T, which depends upon the temperature. As temperature increases mean kinetic energy of the molecules also increases.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 2.
How specific heat capacity of mono atomic, diatomic and poly atomic gases can be explained on the basis of Law of equipartition of Energy ? [Mar. 13]
Answer:
Specific heat capacity:
1) Mono atomic gases : According to law of equipartition of energy, a molecule of mono atomic gas has only 3 (translational) degrees of freedom, i.e., f = 3.
The molar specific heat of the gas at constant volume is given by Cv = \(\frac{f}{2}\) R where f is degree of freedom.
∴ Cv = \(\frac{3}{2}\)R = 3 cal/mole k [∵ R = 2 cal/mole – k]
The molar specific heat at constant pressure is given by
Cp = (\(\frac{f}{2}\) + 1)R = (\(\frac{3}{2}\) + 1) R = \(\frac{5}{2}\)R = 5 cal/ m0le – k

2) Diatomic gases : A molecule of diatomic gas has 5 degrees of freedom, 3 translational and 2 rotational i.e., f = 5
Therefore Cv = \(\frac{f}{2}\) R = \(\frac{5}{2}\)R = 5 cal/mole – k, Cp = (\(\frac{f}{2}\) + 1) R = \(\frac{7}{2}\) R = 7 cal/mole – k

3) Polyatomic gases : Polyatomic molecule has 3 translational, 3 rotational degrees of freedom, i. e., f = 6
Therefore Cv = \(\frac{f}{2}\)R = 3R = 6 cal / mole – k, Cp = (\(\frac{f}{2}\) + 1) = 4R = 8 cal / mole – k.

Question 3.
Explain the concept of absolute zero of temperature on the basis of kinetic theory.
Answer:
Concept of absolute zero on the basis of kinetic theory :
Since the pressure of the gas is given by
P = \(\frac{1}{3} \mathrm{mn} \overline{\mathrm{V}}^2\), where m = mass of the gas, n = \(\frac{\mathrm{N}}{\mathrm{V}}\) = number of molecules per unit volume.
V = r.m.s velocity of gas, P = \(\frac{1}{3} \frac{\mathrm{mN}}{\overline{\mathrm{V}}} \overline{\mathrm{V}}^2\) ⇒ PV = \(\frac{1}{3} m N \overline{V}^2\)
Also for a gram molecule of the gas, PV = RT
Hence RT = \(\frac{1}{3} M \overline{V}^2\) [∵ M = mN = molecular weight]
\(\overline{\mathrm{V}}^2=\frac{3 R T}{M}\)
∴ \(\overline{v}=\sqrt{\frac{3 R T}{M}}\)
Putting T = 0 in the above equation \(\overline{\mathrm{V}}\) = 0. Hence pressure becomes zero. Then the gas converts into liquids. Thus, this temperature is called absolute zero.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 4.
Prove that the average kinetic energy of a molecule of an ideal gas is directly proportional to the absolute temperature of the gas.
Answer:
Since the pressure of the gas is given by
P = \(\frac{1}{3} \mathrm{mn} \overline{\mathrm{V}}^2\), where m = mass of the gas, n = \(\frac{\mathrm{N}}{\mathrm{V}}\) = number of molecules per unit volume
\(\) = r.m.s velocity of gas, P = \(\frac{1}{3} m \frac{N}{V} \overline{V}^2\) ⇒ PV = \(\frac{1}{3} \mathrm{mNV}^2\)
Also for a gram molecule of the gas, PV = RT
Hence RT = \(\frac{1}{3}\) mNV2
3\(\frac{\mathrm{R}}{\mathrm{V}}\)T = \(\mathrm{m} \overline{\mathrm{V}}^2\) or \(\frac{1}{2}\) mV2 = \(\frac{3}{2}\)KBT [∵ \(\frac{\mathrm{R}}{\mathrm{V}}\) = KB]
Where KB is the Boltzmann constant and T is the absolute temperature. ∴ E = \(\frac{3}{2}\)KBT
Hence the average kinetic energy of a molecule is proportional to the absolute temperature of the gas.

Question 5.
Two thermally insulated vessels 1 and 2 of volumes V1 and V2 are joined with a valve and filled with air at temperatures (T1, T2) and pressures (P1, P2) respectively. If the valve joining the two vessels is opened, what will be the temperature inside the vessels at equilibrium.
Answer:
During adiabatic process, there is no loss of energy, i.e. K.ET of molecules before mixing = K.ET of molecules after mixing.
AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory 1

Question 6.
What is the ratio of r.m.s speed of Oxygen and Hydrogen molecules at the same temperature ?
Answer:
The r.m.s speed of gas is \(\overline{\mathrm{V}}=\sqrt{\frac{3 R T}{M}} \Rightarrow \frac{\overline{\mathrm{V}}_0}{\mathrm{~V}_{\mathrm{H}}}=\sqrt{\frac{\mathrm{M}_{\mathrm{H}}}{\mathrm{M}_{\mathrm{O}}}}\), Given MH = 2 and M0 = 32
\(\frac{\overline{\mathrm{V}}_0}{\overline{\mathrm{V}}_{\mathrm{H}}}=\sqrt{\frac{2}{32}}=\frac{1}{4}\)
∴ V0 : VH = 1 : 4

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 7.
Four molecules of a gas have speeds 1, 2, 3 and 4 km/s. Find the rms speed of the gas molecule.
Answer:
Given V1 = 1 km/s; V2= 2 km/s; V3 = 3 km/s; V4 = 4 km/s; = ?
Vrms = \(\sqrt{\frac{V_1^2+V_2^2+V_3^2+V_4^2}{n}}=\sqrt{\frac{1^2+2^2+3^2+4^2}{4}}\)
= \(\sqrt{\frac{1+4+9+16}{4}}=\sqrt{\frac{30}{4}}=\sqrt{7.5}\)
= 2735 kms-1

Question 8.
If a gas has ‘f’ degrees of freedom, find the ratio of CP and CV.
Answer:
If a gas has ‘f’ degrees of freedom, then
CV = \(\frac{f}{2}\)R and CP = CV + R = \(\frac{f}{2}\) R + R = (\(\frac{f}{2}\) + 1)R
Hence the ratio of the two specific heats of a gas is, r = \(\frac{C_p}{C_V}=\left[\frac{\frac{f}{2}+1}{\frac{f}{2} R}\right]=1+\frac{2}{f}\)

Question 9.
Calculate the molecular K.E of 1 gram of Helium (Molecular weight 4) at 127°C. Given R = 8.31 J mol-1 K-1.
Answer:
Given, t = 127°C, T = 273 + 127 = 400; R = 8.31 J mol-1 K-1
K.E. = \(\frac{3}{2}\)KBT = \(\frac{3}{2}\) × 1.38 × 10-23 × 400 = 8.28 × 10-21 J.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 10.
When pressure increases by 2%, what is the percentage decrease in the volume of a gas, assuming Boyle’s law is obeyed ?
Answer:
The gas obeys the Boyles law PV = constant, on differentiating, PdV + VdP = 0
PdV = – V dP ⇒ \(\frac{\mathrm{dV}}{\mathrm{V}}=\frac{-\mathrm{dP}}{\mathrm{P}}\) ⇒ \(\frac{\mathrm{dV}}{\mathrm{V}}\) × 100% = –\(\frac{-\mathrm{dP}}{\mathrm{P}}\) × 100%
% change in volume = – percentage change in pressure
∴ % change in volume = – 2%
Here negative sign indicates decrease in volume.

Long Answer Questions

Question 1.
Derive an expression for the Pressure of an ideal gas in a container from Kinetic Theory and hence give Kinetic Interpretation of Temperature.
Answer:
Let us consider cubical vessel of side T with perfectly elastic wall containing gas molecules. Let the three sides of the cube be taken as co-ordinate axis. Consider a molecule moving with velocity V, in any direction at any instant. The components of V1 along the three sides are Vx, Vy and Vz respectively. Then
\(\overline{V}^2=V_x^2+V_y^2+V_z^2\) ……………………. (1)
If ‘m is the mass of this molecule, it transfers a momentum mV when it strikes the face ABCD of the cube. Since the wall is perfectly elastic, this molecule is reflected back with a velocity – Vx and momentum – mVx. So the change in momentum = mVx – (- mVx)
= 2mVx
This molecule then travels towards the opposite face, collide with it, rebounds and travels again towards the face ABCD. The distance travelled between two successive collisions is 2l. Time taken between two successive collisions is \(\frac{2 l}{\mathrm{~V}_{\mathrm{x}}}\)
AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory 2
∴ Number of collisions per second = \(\frac{V_x}{2 l}\)
Change in momentum per second = (2mVx) × \(\left(\frac{\mathrm{V}_{\mathrm{x}}}{2 l}\right)=\frac{\mathrm{mV}_{\mathrm{x}}^2}{l}\)
Thus force exerted by this molecule = \(\frac{\mathrm{mV}_{\mathrm{x}}^2}{l}\) [∵ F = \(\frac{\mathrm{dP}}{\mathrm{dt}}\)]
Hence, force exerted by N such molecule in the X-direction.
f1 = \(\mathrm{N} \frac{\mathrm{mV}_{\mathrm{x}}^2}{l}=\frac{\mathrm{mNV}_{\mathrm{x}}^2}{l}\)
∴ Pressure exerted by the molecules in the x-direction is Px = \(\frac{f_1}{l^2}=\frac{m N \overline{V}_x^2}{l^3}\)
Similarly, pressure exerted by the molecules in the y and z-directions are
Py = \(\frac{\mathrm{m}}{l^3} \mathrm{~N} \overline{\mathrm{V}}_{\mathrm{y}}^2\) and Pz = \(\frac{\mathrm{m}}{l^3} \mathrm{~N} \overline{\mathrm{V}}_{\mathrm{z}}^2\)
Since the pressure exerted by a gas in all the directions is same, the average pressure
P = \(\frac{P_x+P_y+P_z}{3}=\frac{m N}{3 l^3}\left[V_x^2+v_y^2+V_z^2\right]=\frac{m N}{3 V} \overline{V}^2\) [ from (1) and V = l3]
Here V2 is the mean square velocity of the molecule, V is the volume of the vessel.
If M is the mass of the gas then M = mN
∴ P = \(\frac{1}{3} \frac{M^2}{V}=\frac{1}{3} m n \overline{V}^2\) [∵ n = \(\frac{N}{V}\)]
This pressure is actually the pressure exerted by an ideal gas.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

b) Kinetic interpretation of temperature :
Since the pressure of the gas is given by
P = \(\frac{1}{3} m n \overline{V}^2\), where m = mass of the gas, n = \(\frac{N}{V}\) = Number of molecules per unit volume
\(\overline{V}\) = r.m.s velocity of gas
AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory 3
Here KB is Boltzmann constant. So mean kinetic energy of a molecule is \(\frac{3}{2}\) KBT, which depends upon the temperature. As temperature increases means kinetic energy of the molecules also increases.

Additional Problems

Question 1.
Estimate the fraction of molecular volume to the actual volume occupied by oxygen gas at STP. Take the diameter of an oxygen molecule to be 3 Å.
Solution:
Here, diameter,
d = 3A°, r = \(\frac{\mathrm{d}}{2}=\frac{3}{2}\) A° = \(\frac{3}{2}\) × 10-8 cm.
Molecular volume,
v = \(\frac{4}{3}\) πr3N, where N is Avagadros No.
= \(\frac{4}{3}\) × \(\frac{22}{7}\) (1.5 × 10-8)3 × (6.023 × 1023)
= 8.52 cc.
Actual volume occupied by 1 mole of oxygen at STP v = 22400 cc
= \(\frac{v}{v^{\prime}}=\frac{8.52}{22400}\) = 3.8 × 10-4 = 4 × 10-4.

Question 2.
Molar volume is the volume occupied by 1 mol of any (ideal) gas at standard temperature and pressure (STP : 1 atmospheric pressure, 0 °C.) Show that it is 22.4 litres.
Solution:
For one mole of an ideal gas, ρv = RT
∴ v = \(\frac{\mathrm{RT}}{\rho}\)
Put R = 8.31 J mole-1 k-1, T = 273k, ρ = 1 atm = 1.013 × 105 Nm-2
v = \(\frac{8.31 \times 273}{1.013 \times 10^5}\) = o.0224m3 = 0.0224 × 106
cc = 22400 cc = 22.4 lit.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 3.
Figure 14.8 shows plot of PV/T versus P for 1.00 × 10-3 kg of oxygen gas at two different temperatures.
AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory 4
a) What does the dotted plot signify ?
b) Which is true: T1 > T2 or T1 < T2 ?
c) What is the value of PV/T where the curves meet on they y-axis ?
d) If we obtained similar plots for 1.00 × 10-3 kg of hydrogen, would we get the same value of PV/T at the point where the curves meet on the y-axis ? If not, what mass of hydrogen yields the same value of PV/T (for low pressurehigh temperature region of the plot) ? (Molecular mass of H2 = 2.02 u, of O2 = 32.0 u, R = 8.31 J mole-1 K-1.)
Solution:
a) The dotted plot shows that \(\frac{\mathrm{PV}}{\mathrm{T}}\) (= μR) is a constant quantity, independent of pressure p. This sign signifies the ideal gas behaviour.

b) The curve at temperature T1 is closer to dotted plot than the curve at temperature T2. As the behaviour of a real gas approaches the behaviour of a perfect gas when temperature is increased, therefore T1 > T2.

c) Where the two curves meet, the value of
\(\frac{\mathrm{PV}}{\mathrm{T}}\) on y-axis is equal to μR.
As mass of oxygen gas = 1.00 × 10-3 kg = 1g
\(\frac{\mathrm{PV}}{\mathrm{T}}\) = nR (\(\frac{1}{32}\)) × 8.31 Jk-1.

d) If we obtained similar plots for 1.00 × 10-3 kg of hydrogen, we will not get the same value of \(\frac{\mathrm{PV}}{\mathrm{T}}\) at the point, where the curve meets on the y-axis. This is because molecular mass of hydrogen is different from that of oxygen.
For same value of \(\frac{\mathrm{PV}}{\mathrm{T}}\) mass of hydrogen required is obtained from.
\(\frac{\mathrm{PV}}{\mathrm{T}}\) = nR = \(\frac{\mathrm{M}}{2.02}\) × 8.31 = 0.26
M = \(\frac{2.02 \times 0.26}{8.31}\) gm = 6.32 × 10-2 grams.

Question 4.
All oxygen cylinder of volume 30 litres has an initial gauge pressure of 15 atm and a temperature of 27 °C. After some oxygen is withdrawn from the cylinder, the gauge pressure drops to 11 atm and its temperature drops to 17 °C. Estimate the mass of oxygen taken out of the cylinder (R = 8.31 J mol-1 K-1, molecular mass of O2 = 32 u).
Solution:
Initially in the oxygen cylinder,
v1 = 30 lit = 30 × 10-3 m3
P1 = 15 atm = 15 × 1.01 × 105 Pa;
T1 = 27 + 273 = 300 k.
If the cylinder contains n1 mole of oxygen gas, then
P1v1 = nRT1
(or) n1 = \(\frac{\mathrm{P}_1 \mathrm{~V}_1}{\mathrm{RT}_1}=\frac{\left(15 \times 1.01 \times 10^5\right) \times\left(30 \times 10^{-3}\right)}{8.3 \times 300}\)
= 18.253 .
For oxygen, molecular weight, M = 32 g
Initial mass of cylinder,
M1 = n1 M = 18.253 × 32 = 584.1 g
Finally in the oxygen cylinder, let n2 moles of O2 be left, were,
v2 = 30 × 10-3 m3, P2 = 11 × 1.01 × 105 Pa, T2 = 17 + 273 = 29K
Now
n2 = \(\frac{\mathrm{P}_2 \mathrm{~V}_2}{\mathrm{RT}_2}=\frac{\left(11 \times 1.01 \times 10^5\right) \times\left(30 \times 10^{-3}\right)}{8.3 \times 290}\)
= 13.847
∴ Final mass of oxygen gas in the cylinder,
m2 = 13.847 × 32 = 453.1 g
∴ Mass of oxygen taken out = m1 – m2 = 631.0 g.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 5.
An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12 °C. To what volume does it grown when it reaches the surface, which is at a temperature of 35 °C ?
Solution:
v1 = 1.0 cm3 = 1.0 × 10-6 m3,
T1 = 12 °C = 12 + 273 = 285 k
P1 = 1 atm + h1 ρg = 1.01 × 105 + 40 × 103 × 9.8
= 493000 Pa.
When the air bubble reaches at the surface of lake, then
v2 = 2, T2 = 35 °C = 35 + 273 = 308 K,
P2 = 10 atm = 1.01 × 105 pa.
Now \(\frac{P_1 v_1}{T_1}=\frac{P_2 v_2}{T_2}\) (or) v2 = \(\frac{P_1 v_1 T_2}{T_1 P_2}\)
∴ v2 = \(\frac{(493000) \times\left(1.0 \times 10^{-6}\right) \times 308}{285 \times 1.01 \times 10^5}\)
= 5.27 × 10-6m3.

Question 6.
Estimate the total number of air molecules (inclusive of oxygen, nitrogen, water vapour and other constituents) in a room of capacity 25.0 m3 at a temperature of 27 °C and 1 atm pressure.
Solution:
Here, v = 25.0 m3, T = 27 + 273 = 300 k,
k = 1.38 × 10-23 Jk-1
Now Pv = nRT = n(NK) T = (nN) kT = N’kT
When nN = N’ = total no. of air molecules in the given gas.
N’ = \(\frac{\mathrm{Pv}}{\mathrm{kT}}=\frac{\left(1.01 \times 10^5\right) \times 25}{\left(1.38 \times 10^{-23}\right) \times 300}\) = 6.10 × 1026

Question 7.
Estimate the average thermal energy of helium atom at (i) room temperature (27 °C), (ii) the temperature on the surface of the Sun (6000 K), (iii) the temperature of 10 million kelvin (the typical core temperature in the case of a star).
Solution:
i) Here, T = 27 °C = 27 + 273 = 300 k
Average thermal energy
= \(\frac{3}{2}\) kT = \(\frac{3}{2}\) × 1.38 × 10-23 × 300
= 6.2 × 10-21 J

ii) At T = 6000 k. Average thermal energy = \(\frac{3}{2}\)kT = \(\frac{3}{2}\) × 1.38 × 10-23 × 6000
= 1.24 × 10-19 J.

iii) At T = 10 million K = 107 K.
Average thermal energy
= \(\frac{3}{2}\)kT = \(\frac{3}{2}\) × 1.38 × 10-23 × 107
= 2.1 × 10-16 J.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 8.
Three vessels of equal capacity have gases at the same temperature and pressure. The first vessel contains neon (monatomic), the second contains chlorine (diatomic), and the third contains uranium hexafluoride (poly-atomic). Do the vessels contain equal number of respective molecules ? Is the root mean square speed of molecules the same in the three cases ? If not, in which case is urms the largest ?
Solution:
All the three vessels (at the same temperature and pressure) have same volume. So in accordance with the avagadro’s law, the three vessels will contain equal number of respective molecules, being equal to
Avagadro’s number N = 6.023 × 1023
As vrms = \(\sqrt{\frac{3 k T}{m}}\)
i.e., vrms ∝ \(\frac{1}{\sqrt{m}}\) at a given temp, therefore, rms speed of molecules will not be same in the three cases.
As neon has the smallest mass, therefore, rms speed will be largest in case of neon.

Question 9.
At what temperature is the root mean square speed of an atom in an argon gas cylinder equal to the rms speed of a helium gas atom at – 20 °C ? (atomic mass of Ar = 39.9 u, of He = 4.0 u).
Solution:
Let c and c’ be the rms velocity of argon and a helium gas atoms at temperature TK and TK’ respectively.
Here μ = 39.9, μ = 4.0,
T = 2, T’ = -20 + 273 = 253 K.
AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory 5

Question 10.
Estimate the mean free path and collision frequency of a nitrogen molecule in a cylinder containing nitrogen at 2.0 atm and temperature 17 °C. Take the radius of a nitrogen molecule to be roughly 1.0 Å. Compare the collision time with the time the molecule moves freely between two successive collisions (Molecular mass of N2 = 28.0 u).
Solution:
Here, λ = 2, f = 2
P = 2 atm = 2 × 1.013 × 105 Nm-2
T = 17 °C = (17 + 273) K = 290 k
σ = 2 × 1 = 2A° = 2 × 10-10 m
K = 1.38 × 10-23 J molecule-1 k-1,
μ = 28 × 10-3 kg
λ = \(\frac{\mathrm{KT}}{\sqrt{2} \pi \sigma^2 \rho}\)
= \(\frac{1.38 \times 10^{-23} \times 290}{1.414 \times 3.14\left(2 \times 10^{-10}\right)^2 \times 2.026 \times 10^5}\)
λ = \(\frac{1.38 \times 29 \times 10^{-7}}{1.44 \times 3.14 \times 2.06}\) = 1.11 × 10-7 m.
vrms = \(\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 \times 8.31 \times 290}{28 \times 10^{-3}}}\) = 508.24 m/s.
Collision frequency = no. of collisions per second = \(\frac{v_{r m s}}{\lambda}=\frac{508.24}{1.11 \times 10^{-7}}\) = 4.58 × 109

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 11.
A metre long narrow bore held horizontally (and closed at one end) contains a 76 cm long mercury thread, which traps a 15 cm column of air. What happens if the tube is held vertically with the open end at the bottom ?
Solution:
When the tube is held horizontally, the mercury of length 76 cm traps length of air = 15 cm. A length of 9 cm of the tube will be left at the open end. Fig. (a). The pressure Of air enclosed in tube will be atmospheric pressure. Let area of cross section of the tube be 1 sq.cm.
∴ P1 = 76 cm and v1 = 15 cm3.
When the tube is held vertically, 15 cm air gets another 9 cm of air (filled in the right hand side position) and let h cm of the mercury flows out to balance the atmospheric pressure. Fig. (b). Then the heights of air column and mercury column are (24 + h) cm and (76 – h) cm respectively.
The pressure of air = 76 – (76 – h) = h cm of mercury
AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory 6
∴ v2 = (24 + h) cm3 and P2 = hcm.
If we assume that temperature remains constant, then
P1v1 = P2v1 or 76 × 15 = h × (24 + h) or h2 + 24h – 1140 = 0
(or) h = \(\frac{-24 \pm \sqrt{(24)^2+4 \times 1140}}{2}\) = 23.8 cm
(or) -47.8 cm.
Since h cannot be negative, therefore h = 23.8 cm.
In vertical position it flows out (23.8) cm.

Question 12.
From a certain apparatus, the diffusion rate of hydrogen has an average value of 28.7 cm3s-1. The diffusion of another gas under the same conditions is measured to have an average rate of 7.2 cm3s-1. Identify the gas.
[Hint: Use Graham’s law of diffusion : R1/R2 = (M2/M1) where R1, R2 are diffusion rates of gases 1 and 2 and M1 and M2 their respective molecular masses. The law is a simple consequence of kinetic theory.]
Solution:
According to Graham’s law of diffusion
\(\frac{r_1}{r_2}=\sqrt{\frac{M_2}{M_1}}\)
Where
r1 = diffusion rate of hydrogen = 28.7 cm3s-1
r2 = diffusion rate of unknown gas = 7.2 cm3s-1
M1 = molecule wt. of hydrogen = 2u M2 = ?
M2 = ?
∴ \(\frac{28.7}{7.2}=\sqrt{\frac{\mu_2}{\mu_1}} \text { or } M_2=\left(\frac{28.7}{7.2}\right)^2 \times 2\) = 31.78
≈ 32 µ

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 13.
A gas in equilibrium has uniform density and pressure throughout its volume. This is strictly true only if there are no external influences. A gas column under gravity, for example, does not have uniform density (and pressure). As you might expect, its density decreases with height. The precise dependence is given by the so- called law of atmospheres.
n2 = n1 exp [-mg(h2 – h1)/KBT] Where n2, n1 refer to number density at heights h2 and h1 respectively. Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column :
n2 = n1 exp [-mg NA (ρ – P) (h2 – h1)/(ρRT]
Where ρ is the density of the suspended particle and ρ that of surrounding medium. [NA is Avogadro’s number and R the universal gas constant.]
[Hint: Use Archimedes principle to f ind the apparent weight of the suspended particle.]
Solution:
According to the law of atmospheres n2 = n1 exp. [-\(\frac{m g}{K_B T}\) (h2 – h1)] ………… (1)
Where n2 n1 refer to number density of particles at heights h2 and h1 respectively. If we consider the sedimentation equilibrium of suspended particles in a liquid, then in place of mg, we will have to take effective weight of suspended particles.
Let
v = average vol. of suspended particle
ρ = density of suspended particle
ρ’ = density of liquid
m = mass of one suspended particle
m’ = mass of equal vol. of liquid displaced
According to Archimedis principle, effective weight of one suspended particle.
= actual weight – weight of liquid displaced
= mg – m’ g
= mg – v P’g = mg – (m/P) P’g = mg \(\left(\frac{1-\rho^{\prime}}{\rho}\right)\)
Also boltzman constant, KB = \(\frac{R}{N A}\) ………….. (i)
Where R is gas constant and NA is Avagadros number.
Putting mg \(\left(\frac{1-\rho^{\prime}}{\rho}\right)\) in place of mg and value of KB in (i).
We get
n2 = n1 exp \(\left[-\frac{\text { mgNA }}{R T} \cdot\left(1-\frac{\rho^{\prime}}{\rho}\right)\left(h_2-h_1\right)\right]\)
Which is the required relation.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 14.
Given below are densities of some solids and liquids. Give rough estimates of the size of their atoms :
AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory 7
[Hint: Assume the atoms to be tightly packed1 in a solid or liquid phase, and use the known value of Avogadro’s number. You should, however, not take the actual numbers you obtain for various atomic sizes too literally. Because of the crudeness of the tight packing approximation, the results only indicate that atomic sizes are in the range of few Å].
Solution:
If r is the radius of the atom, then volume of each atom = \(\frac{4}{3}\) πr3
Volume of all atoms in one mole of substance
= \(\frac{4}{3}\) πr3 × N = μ/P
r = \(\left[\frac{3 \mu}{4 \pi \mathrm{PN}}\right]^{\frac{1}{3}}\)
For carbon p = 12.01 × 10-3 kg,
P = 2.22 × 103 kg m-3
r = \(\frac{3 \times 12.01 \times 10^{-3}}{4 \times \frac{22}{7} \times\left(2.2210^3\right) \times\left(6.02310^{23}\right)}\)
r = 1.29 × 10-10 m = 1.29A°
Similarly for gold
r = 1.59A°
For liquid nitrogen r = 1.77A°
For lithium r = 1.73A°
For liquid fluorine r = 1.88A°

Textual Examples

Question 1.
The density of water is 1000 kg m-3. The density of water vapour at 100° C and 1 atm pressure is 0.6 kg m-3. The volume of a molecule multiplied by the total number gives. What is called, molecular volume. Estimate the ratio (or fraction) of the molecular volume to the total volume occupied by the water vapour under the above conditions of temperature and pressure.
Answer:
For a given mass of water molecules, the density is less if volume is large. So the volume of the vapour is 1000/0.6 = /(6 × 10-4) times, large. If densities of bulk water and water molecules are same, then the fraction of molecular volume to the total volume in liquid state is 1. As volume in vapour state has increased, the fractional volume is less by the same amount, i.e. 6 × 10-4.

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 2.
Estimate the volume of a water molecule using the data in Example 1.
Answer:
In the liquid (or solid) phase, the molecules of water are quite closely packed. The density of water molecule may therefore, be regarded as roughly equal to the density of bulk water = 1000 kgm-3. We know that 1 mole of water has a mass approximately equal to (2 + 16)g = 18 g = 0.018 kg.
Since 1 mole contains about 6 × 1023 molecules (Avogadro’s number).
The mass of a molecule of water is (0.018) / (6 × 1023) kg = 3 × 10-26 kg.
Volume of a water molecule = (3 × 10-26 kg) (1000 kg m-3)
= 3 × 10-29 m3
= (4/3)π (Radius)3
∴ Radius » 2 × 10-10 m = 2Å

Question 3.
What is the average distance between atoms (interatomic distance) in water ? Use the data given in Examples 1 and 2.
Answer:
A given mass of water in vapour state has 1.67 × 103 times the volume of the same mass of water inliquid state (e.g. 1). When volume increases by 103 times the radius increases by V1/3 or 10 times,
i.e., = 10 × 12 = 2Å.
So the average distanceis 2 × 10 40 Å.

Question 4.
A vessel contains two non-reactive gases : neon (monatomic) and oxygen (diatomic). The ratio of their partial pressures is 3 : 2. Estimate the ratio of (i) number of molecules and (ii) mass density of neon and oxygen in the vessel. Atomic mass of Ne = 20.2 u, molecular mass of O2 = 32.0 u.
Answer:
Each gas (assumed ideal) obeys the gas law. Since V and T are common to the two gases, we have P1V = μ1 RT and P2V = μ2 RT. i.e., (P1 / P2) = (μ1 / p2). Here 1 and 2 refer to neon and oxygen respectively.
Since (P1 / P2) = (3/2) (given), (μ1 / μ2) = 3/2.

i) By definition μ1 = (N1 /NA) and μ2 = (N2/NA) where N1 and N2 are the number of molecules of 1 and 2, and NA is the Avogadro’s number. Therefore,
(N1/N2) = (μ12) = 3/2.

ii) We can also write μ1 = (m1/ M1) and μ2 = (m2 / M2) where m1 and m2 are their molecular masses. (Both m1 and M1; as well as m2 and M2 should be expressed in the same units). If ρ1 and ρ2 are the mass densities of 1 and 2 respectively, we helve
\(\frac{\rho_1}{\rho_2}=\frac{m_1 / V}{m_2 / V}=\frac{m_1}{m_2}=\frac{\mu_1}{\mu_2} \times\left[\frac{M_1}{M_2}\right]\)
= \(\frac{3}{2} \times \frac{20.2}{30.2}\) = 0.947

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 5.
A flask contains argon and chlorine in the ratio of 2 : 1 by mass. The temperature of the mixtures is 27° C. Obtain the ratio of (i) average kinetic energy per molecule and (ii) root mean square speed vrms of the molecules of the two gases. Atomtic mass of argon = 39.9 u. Molecular mass of chlorine = 70.9 u.
Answer:
The important point to remember is that the average kinetic energy (per molecule) of any (ideal) gas (be it monatomic like argon, diatomic like chlorine or polyatomic) is always equal to (3/2) kBT. It depends only on temperature and is independent of the nature of the gas.
i) Since argon and chlorine both have the same temperature in the flask, the ratio of average kinetic energy (per molecule) of the two gases is 1 : 1.
ii) Now 1/2 mvrms2 = average kinetic energy . per molecule = (3/2) KBT where m is the mass of a molecule of the gas. Therefore,
\(\frac{\left(\mathrm{V}_{\mathrm{rms}}^2\right)_{A \mathrm{C}}}{\left(\mathrm{V}_{\mathrm{ms}}^2\right)_{\mathrm{cl}}}=\frac{(\mathrm{m})_{\mathrm{C}}}{(\mathrm{m})_{\mathrm{Ar}}}=\frac{(\mathrm{M})_{\mathrm{Cl}}}{(\mathrm{M})_{\mathrm{Ar}}}=\frac{70.9}{39.9}\) = 1.77
where M denotes the molecular mass of the gas.
\(\frac{\left(\mathrm{V}_{\text {rms }}\right)_{\mathrm{Ar}}}{\left(\mathrm{V}_{\mathrm{rms}}\right)_{\mathrm{cl}}}\) = 1.33

Question 6.
a) When a molecule (or an elastic ball) hits a (massive) wall, it rebounds with the same speed. When a ball hits a massive bat held firmly, the same thing happens. However, when the bat is moving towards the ball, the ball rebounds with a different speed. Does the ball move faster or slower ? (ch. 6 will refresh your memory on elastic collisions).
b) When gas in a cylinder is compressed by pushing in a piston, its temperature rises. Guess at an explanation of this in terms of kinetic theory using (a) above.
c) What happens when a compressed gas pushes a piston out and expands. What would you observe ?
d) Sachin Tendulkar uses a heavy cricket bat while playing. Does it help him in anyway ?
Answer:
a) Let the speed of the ball be u relative to the wicket behind the bat. If the bat is moving towards the ball with a speed V relative to the wicket, then the relative speed of the ball to bat is V + u towards the bat. When the ball rebounds (after hitting the massive bat) its speed, relative to bat, is V + u moving away from the bat. So relative to the wicket the speed of the rebounding ball is V + (V + u) = 2V + u, moving away from the wicket. So the ball speeds up after the collision with the bat. The rebound speed will be less than u if the bat is not massive. For a molecule this would imply an increase in temperature.
You should be able to answer (b) (c) and (d) based on the answer to (a).

AP Inter 1st Year Physics Study Material Chapter 14 Kinetic Theory

Question 7.
A cylinder of fixed capacity 44.8 litres contains helium gas at standard temperature and pressure. What is the amount of heat needed to raise the temperature of the gas in the cylinder by 15.0° C ? (R = 8.31 J mol-1 K-1).
Answer:
Using the gas law PV = μRT, you can easily show that 1 mol of any (ideal) gas at standard temperature (273 K) and pressure (1 atm = 1.01 × 105 Pa) occupies a volume of 22.4 litres. This universal volume is called molar volume. Thus the cylinder in this example contains 2 mol of helium. Further, since helium is monatomic, its predicted (and observed) molar specific heat at constant volume, Cv = (3/2) R, and molar specific heat at constant pressure, Cp = (3/2) R + R =(5/2) R. Since the volume of the cylinder is fixed, the heat required is determined by Cv.
Therefore,
Heat required = no. of moles × molar specific heat × rise in temperature
= 2 × 1.5 R × 15.0 = 45
R = 45 × 8.31 = 374 J.

Question 8.
Estimate the mean free path for water molecule in water vapour at 373 K. Use information from Exercises 1 and above. l = 2.9 × 10-7 m = 1500d.
Ans. The d for water vapour is same as that of air. The number density is inversely proportional to absolute temperature.
So n = 2.7 × 1025 × \(\frac{273}{373}\) = 2 × 1025 m-3
Hence, mean free path l = 4 × 10-7 m.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Andhra Pradesh BIEAP AP Inter 1st Year Physics Study Material 13th Lesson Thermodynamics Textbook Questions and Answers.

AP Inter 1st Year Physics Study Material 13th Lesson Thermodynamics

Very Short Answer Questions

Question 1.
Define Thermal equilibrium. How does it lead to the Zeroth Law of Thermodynamics?
Answer:
If the temperatures of the two systems are equal, then they are said to be in thermal equilibrium.
Zeroth law of thermodynamics: “If two systems (A, B) are in thermal equilibrium with the third system (c) separately, then two systems (A, B) thermal equilibrium with each other.”

Question 2.
Define Calorie. What is the relation between calorie and mechanical equivalent of heat?
Answer:
Calorie: It is defined to be the amount of heat required to raise the temperature of 1g of water from 14.5°C to 15.5°C.
The relation between calorie and mechanical equivalent of heat is given by 1 cal = 4186 J Kg-1K-1 or 1 cal = 4.186 J g-1K-1.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Qeustion 3.
What thermodynamic variables can be defined by
a) Zeroth Law
b) First Law ?
Answer:
a) Temperature
b) Internal energy.

Question 4.
Define specific heat capacity of the substance. On which factors does it depend ?
Answer:
Specific heat capacity :
The amount of heat required to raise the 1 gm of substance through 1°c or 1 k is called specific heat capacity (or) the heat capacity per unit mass is called specific heat.
S = \(\left(\frac{1}{m}\right) \frac{\Delta Q}{\Delta T}\)
It depends on 1) natuture of the substance 2) temperature.

Question 5.
Define molar specific heat capacity.
Answer:
Molar specific heat capacity : The amount of heat required to raise the 1gm mole of substance through 1°C or 1°K is called molar specific heat capacity.

Question 6.
For a solid, what is the total energy of an oscillator ?
Answer:
For a mole of a solid, the total energy of an oscillator, U = 3KB T × NA = 3RT.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 7.
Indicate the graph showing the variation of specific heat of water with temperature. What does it signify ?
Ans.
AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics 1
Significance : the specific heat of water varies slightly with temperature in the range 0 to 100°C.

Question 8.
Define state variables and equation of state.
Answer:
State variables : The state of a system is described by pressure P, temparature T, density p (intensive variables) and internal energy U, Volume V, total mass M (Extensive variables). These are called state variables.

Equation of state : The connection between the state variables is called the equation of state.

Question 9.
Why a heat engine with 100% efficiency can never be realised in practise ?
Answer:
The efficiency of heat engine is η = 1 – \(\frac{Q_2}{Q_1}\)
For Q2 = 0, η = 1, i.e., the engine will have 100% efficiency in converting heat into work.
The first law of thermodynamics does not rule out such an engine. But experience shows that such an ideal engine with η = 1 is never possible.

Question 10.
In summer, when the valve of a bicycle tube is opened, the escaping air appears cold.
Answer:
This happens due to adiabatic expansion of the air of the tube of the bicycle.

Question 11.
Why does the brake drum of an automobile get heated up while moving down at constant speed ?
Answer:
The work done by the brake drum on wheel is converted into heat due to friction.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 12.
Can a room be cooled by leaving the door of an electric refrigerator open ?
Answer:
No, a room can not be cooled by leaving the door of a refrigerator open, rather it will get slightly heated.

Question 13.
Which of the’ two will increase the pressure more, an adiabatic or an isothermal process, in reducing the volume to 50% ?
Answer:
Isothermal process obeys , P1V1 = P2V2
But V2 = \(\frac{\mathrm{v_1}}{2}\) ⇒ P1V1, = P2 \(\frac{\mathrm{v_1}}{2}\)
∴ P2 = 2P1
Adiabatic process obeys, P1V1γ = P2V2γ
P2 = \(P_1\left[\frac{v_1}{v_2}\right]^\gamma=p_1\left[\frac{v_1}{\frac{v_1}{2}}\right]\)
∴ P2 = 2γ P1 Where r = \(\frac{C_p}{C_v}\)
∴ pressure is more in adiabatic than isothermal.

Question 14.
A thermoflask containing a liquid is shaken vigorously. What happens to its temperature ? .
Answer:
Work is done by the liquid on the wall of flask, since it is vigorously shaken. Hence Internal energy and temperature of the liquid increases.

Question 15.
A sound wave is sent into a gas pipe. Does its internal energy change ?
Answer:
Yes, a sound wave is sent into a gas pipe internal energy increases.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 16.
How much will be the internal energy change in

  1. isothermal process
  2. adiabatic process

Answer:

  1. Change in internal energy during isothermal process is dU = 0 [∵ U is constant)]
  2. a) Change in internal energy during adiabatic compression increases,
    b) Change in internal energy during adiabatic expansion decreases.

Question 17.
The coolant in a chemical or a nuclear plant should have.high specific heat. Why ?
Answer:
In chemical and nuclear plants more heat is liberated. To absorb this heat, the coolant should have a property of high specific heat for small rise in temperature.
Since S = \(\frac{1}{m} \frac{d Q}{d t}\) ⇒ S ∝ \(\frac{1}{d t}\)

Question 18.
Explain the following processes

  1. Isochoric process
  2. Isobaric process

Answer:

  1. Isochoric process : A process takes place at constant volume is called Isochoric process. During this process, no work is done on or by the gas, its internal energy and its temperature changes.
  2.  Isoboric process : A process takes place at constant pressure is called isobaric process During this process temperature, internal energy changes. The heat absorbed goes partly to increase internal energy and partly to do work.

Short Answer Questions

Question 1.
State and explain first law of thermodynamics.
Answer:
Statement: The amount of heat supplied to system is equal to the algebraic sum of the change in internal energy of the system and the amount of external work-done.

Explanation : When ∆Q is the quantity of heat is supplied to system, a part of it is used to increase its internal energy ∆U and the rest is used in doing external work ∆W. The mathematical expressions of this law is ∆Q = ∆U – ∆W. It is a special case of law of conservation of energy.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 2.
Define two principal specific heats of a gas. Which is greater and why ?
Answer:
Two principal specific heats of a gas are

  1. Molar specific heat capacity at constant pressure
  2. molar specific heat capacity at constant volume.

1. Molar Specific heat capacity at constant pressure (Cp): The amount of heat required to raise the temperature of 1 gm – mole of a gas through 1°C at constant pressure is called molar specific heat at constant pressure.
i.e., Cp = \(\frac{1}{\mu} \frac{\Delta Q}{\Delta T}\) where μ is no of moles.

2. Molar Specific heat capacity at constant volume (Cv): The amount of heat required to raise the temperature of 1gm – mole of a gas through 1°C at constant volume is called molar specific heat at constant volume i.e., Cv = \(\frac{1}{\mu} \frac{\Delta Q}{\Delta T}\)

Explanation of Cp is greater that Cv: When a gas is heated at a constant pressure, it expands. The heat supplied to it is used partly in raising its temperature and partly in doing work against the external pressure. If, on the other hand, the gas is heated at constant volume, no work is done. Therefore, the heat supplied is to be used only in raising the temperature. Hence the amount of heat required to be supplied to a gas to raise its temperature by 1 °C (say) at constant pressure will be greater than the amount required at constant volume.

Question 3.
Derive a relation between the two specific heat capacities of gas on the basis of first law of thermodynamics
Answer:
The mathematical equation of first law of thermodynamics for 1 mole of gas is given by
∆Q = ∆U + P∆V
if ∆Q is absorbed heat at constant volume, ∆V = 0
Cv = \(\left[\frac{\Delta Q}{\Delta T}\right]_V=\left[\frac{\Delta U}{\Delta T}\right]_V=\left[\frac{\Delta U}{\Delta T}\right]\) ……………. (1)
Where the subscript V is dropped in the last step, since U of an ideal gas depends only on temperature. (The subscript denotes the quantity kept fixed.) If, on the other hand, ∆Q is absorbed heat at constant pressure,
Cp = \(\left[\frac{\Delta Q}{\Delta T}\right]_P=\left[\frac{\Delta U}{\Delta T}\right]_P+P\left[\frac{\Delta V}{\Delta T}\right]_P \Rightarrow\left[\frac{\Delta Q}{\Delta T}\right]_P=\left[\frac{\Delta U}{\Delta T}\right]+P\left[\frac{\Delta V}{\Delta T}\right]_P\) ………………… (2)
The subscript p.can be dropped from the first term since U of an ideal gas depends only on T. Now, for a mole of an ideal gas.
PV = RT
Which gives P\(\left[\frac{\Delta V}{\Delta T}\right]_P\) = R
Putting the equations (1) and (3) in (2), we get
Cp = Cv + R
∴ Cp – Cv = R

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 4.
Obtain an expression for the work done by an ideal gas during isothermal change.
Answer:
Expression for the work done by an ideal gas during isothermal change : Let a certain mass of gas expands from volume V1 to V2 isothermally at constanst temperature T. Let the pressure changes form P1 to P2.
The work done during the small change in volume dv at a pressure ‘p’ is dw = pdv
The total work done during the change of volume from V1 to V2 is W = \(\int d w=\int_{V_1}^{V_2} p d v\) …………. (1)
The Isothermal change is represented by
PV = constant
PV = μRT ⇒ P =\(\frac{\mu \mathrm{RT}}{\mathrm{V}}\) where μ = no. of moles
substituting this value in equation (1)
W = \(\int_{V_1}^{v_2} p d v=\int_{V_1}^{V_2} \frac{\mu R T}{V} d V=\mu R T \int_{V_1}^{V_2} \frac{d v}{V}\)
W = μRT loge \(\frac{V_2}{V_1}\)
∴ Work done during the isothermal change W = 2.3026 RT log10 \(\frac{V_2}{V_1}\) .

Question 5.
Obtain an expression for the work done by an ideal gas during adiabatic change and explain.
Answer:
Expression for the work done by an ideal gas during adiabatic change :
During an adiabatic chnage the state of an ideal gas changes from (P1, V1, T1) to (P2, V2, T2)
The workdone during a small change in volume dV at a pressure p is dw = pdV
Total work done by gas from volume V1 to V2 is ,
W = \(\int\) dw = \(\int_{v_1}^{v_2}\) pdv ………………. (1)
The adiabatic relation between pressure and volume is given by PVr = constant K …………. (2)
P = \(\frac{k}{v^r}\) …………… (3)
and P1V1r = P2V2r = K
Substituting eg. (3) in (1) becomes
AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics 2
This is equal to the work done during the adiabatic change.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 6.
Compare isothermal and an adiabatic process.
Answer:
Isothermal change

  1. Changes in volume and pressure of a gas taking place at constant temperature are called isothermal changes,
  2. Temperature of the gas remains constant.
  3. The gas remains in good thermal contact with the surroundings and heat is exchanged.
  4. Internal energy remains constant. Change in internal energy ∆U = 0
  5. This process takes place slowly.
  6. Boyle’s law PV = Constant holds good.
  7. Work done W = RT loge\(\frac{V_2}{V_1}\) .

Adiabatic change

  1. Changes in volume and pressure of a gas taking place in a thermally isolated system are called adiabatic changes.
  2. Temperature of the gas changes.
  3. The gas is isolated from the surroundings and heat is not exchanged ∆Q = 0.
  4. Internal energy changes.
  5. This process takes place quickly.
  6. PVr = Constant
  7. Work done W = \(\frac{R}{(r-1)}\)(T1 – T2)

Question 7.
Explain the following processes
i) Cyclic process with example
ii) Non cyclic process with example
Answer:
i) Cyclic process: “A process in which the system after passing through various stages (of pressure, volume and temperature changes) returns to its initial state1′ is called as a cyclic process.
For cyclic process P.V graph is a closed curve. The area under P-V graph gives work done by the substance. In a cyclic process there will be no change in the internal energy i.e., ∆U = 0
The first law of thermodynamics states that
∆Q = ∆U + ∆W
∴ For cyclic process ∆Q = ∆W
In cyclic process, the total heat absorbed by the system equals the work done by the system. Example : Fleat engine is a device by which a system is made to undergo a cyclic process that results in conversion of heat to work.

ii) Non cyclic process : A process which is not cyclic is called Non-cyclic process. In Non-cydic process, the system does not attains its initial state. Irreversible process is a Non cyclic process. Workdone in non-cyclic process is given by the area between the curve and volume axis.

Example :

  1. Diffusion of liquids or gases
  2. Free expansion of a perfect gas.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 8.
Write a short note on Quasi – static process.
Answer:
A quasi-static process is defined as “an infinitesimally slow process in which at each and every intermediate stage the system remains in thermal and mechanical (thermodynamic) equilibrium with the surroundings through out the entire process.”

In this process the pressure and temperature of the surroundings at each and every stage will differ from those of the system only in a very small amount.

Any process taking place sufficiently slowly, not involving acceleration motions and large temperature gradients can be considered as quasi -static process.
Example : isothermal process, adiabatic process.

Question 9.
Explain qualitatively the working of a heat engine.
Answer:
“A device used to convert heat energy into work (or mechanical energy)” is called heat engine. A heat engine converts heat into work.
A heat engine consists of the following essential parts :
AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics 3

  1. A body at a higher temperature T1. Heat Q1 is extracted from this body and hence it is called a “hot reservior” (or source).
  2. The engine contains working substance. In a steam engine the working substance is the steam. In a diesel engine the working substance is a mixture of fuel vapour and air.
  3. A body at lower temperature T2. Heat Q2 is rejected by the working substance to this body and hence it is called a cold reservoir (or sink).

The difference in heat absorbed (Q1) and heat rejected (Q2) is equal to the workdone by the system (W). This is because the engine is operated in a cyclic process. W = Q1 – Q2.

The heat engine operates in a cyclic process and in each cycle, the work done (W) by the system is transferred to the environment via some arrangement (shaft) to drive vehicles.

The efficiency (η) of aheat engine is defined as the ratio of the workdone (W) by the engine to the amount of heat absorbed (Q1) by the engine.
Efficiency (η) = \(\frac{\mathrm{W}}{\mathrm{Q}_1}=\frac{\mathrm{Q}_1-\mathrm{Q}_2}{\mathrm{Q}_1}=1-\frac{\mathrm{Q}_2}{\mathrm{Q}_1}\)

Long Answer Questions

Question 1.
Explain reversible and irreversible processes. Describe the working of Carnot engine. Obtain an expression for the effieciency. [AP – Mar. ’18, ’17, ’16, 15; TS – Mar. ’17, ’15, ’14]
Answer:
Reversible process : A process that can be retraced back in the opposite direction in such away that the system passes through the same states as in the direct process, and finally the system and the surroundings return in their original states, is called a reversible process.
A reversible process is only a purely idealised process.
Examples:

  1. Slow isothermal and slow adiabatic changes
  2. Peltier effect and seeback effect.
  3. Fusion of ice and vaporisation of water.

Irreversible process : “A process that cannot be retraced back in the opposite direction” is called as irreversible process.

In this process the system does not pass through the same intermediate states as in the reversible process.
All natural processes such as conduction, radiation, radioactivity etc, are irreversible.
Example:

  1. Work done against friction.
  2. Heat produced in conductors by passing a current through it. (Joule heating)
  3. Diffusion of gases.

Carnot Engine : A reversible heat engine operating between two temperatures is called a carnot engine. The cycle operating it is known as carnot’s cycle. In this cycle the working substance(say an ideal gas) is taken through a cycle by means of two isothermals and two adiabatics. The four operations are shown in P-V (Indicator) diagram.
AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics 4

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Step 1 → 2 : Isothermal expansion of the gas taking its state from (P1, V1, T1) to (P2, V2, T2). It is shown in curve (a).
The heat absorbed by the gas (Q1) from the reservoir at temperature
T1 equals the workdone by the gas. i.e.
W1 → 2 = Q1 = μRT1 loge \(\frac{V_2}{V_1}\)

Step 2 →3 : Adiabatic expansion of the gas from (P2, V2, T1) to (P3, V3, T2). It is shown in curve (b). The work done by the gas is gÑen by
W2 → 3 = \(\frac{\mu R\left(T_1-T_2\right)}{(r-1)}\)

Step 3 → 4: Isothermal compression of the gas from (P3, V3, T2) to (P4, V4, T2). It is shown in curve (c).
Heat released (Q2) by the gas to the reservoir at temperature T2 equals the work done on the goes.
i.e., W3 → 4;= μRT2 loge \(\frac{V_4}{V_3}\) = -μRT1 loge \(\frac{V_3}{V_4}\)

Step 4 → 1: Adiabatic compression of the gas from (P4, V4, T2) to (P1, V1, T1). It is shown in curve (d) Work done on the gas is given by.
W4 → 1 = μR \(\frac{\left(T_2-T_1\right)}{(r-1)}=-\mu R \frac{\left(T_1-T_2\right)}{(r-1)}\)
Total work done by the gas in one complete cycle is
W = W1 → 2 + W2 → 3 + W3 → 4 + W4 → 1
= \(\mu R T_1 \log _e \frac{V_2}{V_1}+\frac{\mu R\left(T_1-T_2\right)}{(r-1)}-\mu R T_2 \log _e \frac{V_3}{V_4}-\frac{\mu R\left(T_1-T_2\right)}{(r-1)}\)
∴ W = μRT1 loge \(\frac{V_2}{V_1}\) – μRT2 loge \(\frac{3}{V_4}\) = Q1 – Q2 …………… (2)
The efficiency of the cannot engine is
η = \(\frac{W}{Q_1}=\frac{Q_1-Q_2}{Q_1}\) ………… (3)
Now since step 2 → 3 is an adiabatic process,
T1V2r – 1 ≈ T2V3r – 1
Similarly, since step 4 → 1 is an adiabatic process,
T2V2r – 1 = T1V1r – 1 ⇒ T1V1r – 1 = T2V2r – 1
AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics 5

Question 2.
State second law of thermodynamics. How is heat engine different form a refrigerator. [TS – Mar. ’18, ’16; AP – Mar. ’15, ’13]
Answer:
Second law of thermodynamics gives the direction of flow of heat. Second law consists two statements.

  1. Kelvin – Planck statement: “No process is possible whose sole result is the absorption of heat from a reservoir and the complete conversion of the heat into work”.
    (or)
    “It is impossible to derive a continuous supply of engines in cooling a body below the coldest of its surroundings1′.
  2. Clausius statement : “No process is possible whose sole result is the transfer of heat from a colder object to a hotter object”.
    (or)
    “Heat can not itself flow from cold body to hot body”.

Heat engine : A device which converts heat energy into work is called heat engine.
A heat engine consists of the essential parts.
AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics 6

  1. Source or hot reservoir: It is maintained at a very high temperature T1. Heat is extracted from this body.
  2. Working substance : In a steam engine working substance is steam. In a diesel engine working substance is mixture of fuel vapour and air.
  3. Sink or cold reservoir: It is maintained at a very low temperature T2. It absorbs heat energy, rejected by working substance.

Work done: The difference of heat absorbed from source and heat rejected to sink is equal to work done by the engine, i.e., W = Q1 – Q2.
Efficiency : The ratio of workdone (W) by the engine to the amount of heat absorbed (Q1) by the engine is called efficiency.
i.e., η = \(\frac{W}{Q_1}=\frac{Q_1-Q_2}{Q_1}=1-\frac{Q_2}{Q_1}\)
Refrigerator : Refrigerator is a heat pump which is the reverse of a heat engine.
AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics 7
In refrigerator the working substance extracts (Q2) an amount of heat from sink of lower temperature and a external work W is done on the working substance and finally amount of heat (Q1) is transfered to source.
The coefficient of performance (α) of a refrigerator is given by
α = \(\frac{\mathrm{Q}_2}{\mathrm{~W}}=\frac{\mathrm{Q}_2}{\mathrm{Q}_1-\mathrm{Q}_2}\) (∴ heat released Q1 = Q2 + W)
For heat engine η can never exceed 1. For refregirator a can be greater than 1.
Therefore working of refrigerator is opposite to that of heat engine.

Problems

Question 1.
If a monoatomic ideal gas of volume 1 litre at N.T.P. is compressed (i) adia- batically to half of its volume, find the work done on the gas. Also find (ii) the work done if the cdmpression is iso- thermal, (γ = 5/3)
Solution:
i) During an adiabatic process
T1V1r – 1 = T2V2r – 1
Here T1 = 273 K
V2 = \(\frac{V_1}{2}\)
r = \(\frac{5}{3}\)
T2 = \(\left[\frac{V_1}{V_2}\right]^{\frac{5}{3}-1}=273\left[\frac{V_1}{V_1}\right]^{\frac{2}{3}}\)
T2 = (2)\(\frac{2}{3}\) = 273 = 431.6 K
Number of moles = \(\frac{1 \text { litre }}{22.4 \text { litre }}=\frac{1}{22.4}\)
Work done = \(\frac{\mu R}{(r-1)}\) [T1 – T2]
= \(\frac{8.314}{22.4\left[\frac{5}{3}-1\right]}\) × (273 – 431.6)
= \(\frac{8.314 \times 3}{22.4 \times 2}\) (-158.6)
= -89 J

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

ii) Work done during isothermal compression is
w = 2.3026 μRT log10\(\frac{V_2}{V_1}\)
μ = Number of moles = \(\frac{1}{22.4}\)
T = 273K
R = 8.314 Jmol-1K-2
\(\frac{V_2}{V_1}=\frac{1}{2}\) = 0.5
∴ W = \(\frac{2.3026 \times 8.314 \times 273 \log _{10}(0.5)}{22.4}\)
Or w = -70J

Question 2.
Five moles of hydrogren when heated through 20 K expand by an amount of 8.3 × 10-3m3 under a constant pressure of 105 N/m2. If Cv = 20.1/mole K, find Cp.
Solution:
Mayer’s relation Cp – Cv = R
Multiplying throughout by μ∆T
μCp∆T – μCv∆T = μ R∆T
μ ∆T(Cp – Cv) = P∆T [∴ μ R∆T = P∆V]
5 × 20 (Cp – 20) = 105 × 8.3 × (10 – 3)
[∴ μ = 5, ∆T = 20 K, P = 1 × 105 N/m2 Cv = 20 J/mole K and ∆V = 8.3 × 103 M3]
Cp – 20 = 8.3
∴ Cp = 28.3 J/mole-K

Additional Problems

Question 1.
A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C. If the geyser operate on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is 4.0 × 104 J/g ?
Solution:
Here volume of water heated = 3.0 lit/min.
Mass of water heated m = 3000 g/min
Rise in temperature ∆T = 77 – 27 = 50°C
Sp. heat of water C = 4.2 Jg-1C-1
Amount of heat used
∆Q = mc∆T = 3000 × 4.2 × 50
= 63 × 104 J/min
Heat of combustion = 4 × 104 J/g
Rate of combustion of fuel = \(\frac{63 \times 10^4}{4 \times 10^4}\)
= 15.75 g/min

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 2.
What amount of heat must be supplied t 2.0 × 10-2 kg of nitrogen (at room temperature) to raise its temperature by 45 °C at constant pressure ? (Molecular mass of N2 = 28; R = 8.3 J mol-1 K-1.)
Solution:
Here mass of gas m = 2 × 10-2kg = 20g
Rise in temperature ∆T = 45°C
Heat required ∆Q = ?
Molecular mass M = 28
Number of moles n = \(\frac{m}{M}=\frac{20}{28}\) = 0.714
As nitrogen is a diatomic gas, molecular specific heat of constant pressure is
Cp = \(\frac{7}{2}\) R = \(\frac{7}{2}\) × 8.3 J mole-1 K-1
As ∆Q = nCp∆T
∆Q = 0.714 × \(\frac{7}{2}\) × 8.3 × 45 J = 933.4 J

Question 3.
Explain why
a) Two bodies at different temperatures T1 and T2 if brought in thermal contact do not necessarily settle to the mean temperature (T1 + T2)/2.
b) The coolant in a chemical or nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.
c) Air pressure in a car tyre increases during driving.
d) The climate of a harbour town is more temperate then that of a town in a desert at the same latitude.
Solution:
a) In thermal contact heat flows from the body at higher temp to the body at lower temperature till temperatures becomes equal. The final temperature can be the mean temp (T1 + T2)/2 only when thermal capacities of the two bodies are equal.

b) This is because heat absorbed by a substance is directly proportional to the specific heat of the substance.

c) During, driving the temperature of air inside the tyre increases due to motion. According to Charles law, P α T. Therefore, air pressure inside the tyre increases.

d) This is because in a harbour town, the relative humidity is more than in a desert town. Hence the climate of a harbour town is without extremes of hot and cold.

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 4.
A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume ?
Solution:
As no heat is allowed to be exchanged, the process is adiabatic.
∴ P2V2r = P1V1r (or) \(\frac{P_2}{P_1}=\left(\frac{V_1}{V_2}\right)^r\)
As V2 = \(\frac{V_1}{2}\)
∴ P2/P1 = \(\left(\frac{V_1}{\frac{1}{2} V_1}\right)^{1 .4}\)
= 21.4 = 2.64

Question 5.
In changing the state of a gas adiabatically form an equilibrium state A to another equilibrium state B, and amount of work equal to 22.3 J is done on the system. If the gas is taken from state A to B via a process in which the net heat absorbed by the system is 9.35 cal. how much is the net work done by the system in the latter case ? (Take 1 cal = 4.19 J)
Solution:
Here, when the change is adiabatic, ∆Q = 0, ∆w = -22.3 J
If ∆u is change in internal energy of the system, then as
∆Q = ∆u + ∆w
O = ∆u – 22.3 (or) ∆u = 22.3 J
In the second case ∆Q = 9.35 cal
= 9.35 × 4.2 J = 39.3 J
∆w = ?
As ∆u + ∆w = ∆Q
∆w = ∆Q – ∆u
= 39.3 – 22.3 = 17.0 J

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 6.
Two cylinders A and B of equal capacity are connected to each other via a stopcock. A contains a gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following :
a) What is the final pressure of the gas in A and B ?
b) What is the change in internal energy of the gas ?
c) What is the change in the temperature of the gas ?
d) Do the intermediate states of the system (before settling to the final equilibrium state) lie on its P-V-T surface ?
Solution:
a) When the stopcock is suddenly opened, the volume available to the gas at 1 atm pressure will become two times. Therefore pressure will decrease to one-half i.e., 0.5 atm.

b) There will be no change in the internal energy of the gas as no work is done on/ by the gas.

c) Also there will be no change in temp of the gas as gas does no work in expansion.

d) No, because the process called free expansion is rapid and cannot be controlled. The intermediate states are non equilibrium states and do not satisfy the gas equation. In due course, the gas does return to an equilibrium state.

Question 7.
A steam engine delivers 5.4 × 108J . of work per minute and services 3.6 × 109J of heat per minute form its boiler, what is the efficiency of the engine ? How much heat is wasted per minute ? .
Solution:
Output i.e., useful workdone per min
= 5.4 × 108 J
Input i.e., heat absorbed per min
= 3.6 × 109 J
Efficiency = \(\frac{\text { Output }}{\text { Input }}=\frac{5.4 \times 10^8}{3.6 \times 10^9}\) = 0.15
= 0.15 × 100% = 15%
heat energy wasted / minute = Heat absorbed / minute – useful work done / minute
= 3.6 × 109 – 5.4 × 108 = 109 (3.6 – 0.54)
= 3.06 × 109

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 8.
An electric heater supplies heat to a system at a rate of 100W. If system performs work at a rate of 75 joules per second. At what rate is the internal energy increasing ?
Solution:
Heat supplied, ∆Q = 100 w = 100 J/s
Useful workdone ∆w = 75 J/s
Increase in internal energy/ sec, ∆u = ?
As ∆Q = ∆u + ∆w
∴ ∆u = ∆Q – ∆w
= 100 – 75 = 25 J/S

Question 9.
A thermodynamic system is taken from an original state to an intermediate state by the linear process shown in Fig.
AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics 8
Its volume is then reduced to the original value form E to F by an isobaric process. Calculate the total work done by the gas from D to E to F
Solution:
A is clear from fig.
Change in pressure dp = EF = 5.0 – 2.0
= 3.0 atm = 3.0 × 1015 Nm-2
Change in volume dv = DF = 600 – 300
= 300 cc = 300 × 10-6 m3
Workdone by the gas from D to E to F = area of ∆DEF
w = \(\frac{1}{2}\) × DF × EF
= \(\frac{1}{2}\) × (300 × 10-6 ) × (3.0 × 105 ) = 45 J

AP Inter 1st Year Physics Study Material Chapter 13 Thermodynamics

Question 10.
A refrigerator is to maintain eatables kept inside at 9°C. If room temperature is 36°C. calculate the coefficient of performance.
Solution:
Here T1 = 36°C = 36 + 273 = 309 K
T2 = 10°C = 10 + 273 = 283 K
COP = \(\frac{T_2}{T_1-T_2}=\frac{283}{309-283}\)
= \(\frac{283}{26}\) = 10.9

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Andhra Pradesh BIEAP AP Inter 1st Year Physics Study Material 12th Lesson Thermal Properties of Matter Textbook Questions and Answers.

AP Inter 1st Year Physics Study Material 12th Lesson Thermal Properties of Matter

Very Short Answer Questions

Question 1.
Distinguish between heat and temperature. [T.S. Mar. 15]
Answer:
Heat

  1. It is a form of energy.
  2. It is the cause on the body.
  3. It is determined with calorimeter.
  4. It’s unit is Joule and Calories.

Temperature

  1. It is a degree of hotness or coldness of a body.
  2. It is an effect on a body.
  3. It is measured with thermometer.
  4. It’s unit is degree’Celsius or Kelvin or degree Fahrenheit.

Question 2.
What are the lower and upper fixing points in Celsius and Fahrenheit scales ? [T.S. Mar. 16]
Answer:
In Celsius scale, lower fixed point is ice point or 0°C and upper fixed point is steam point or 100°C. In Fahrenheit scale, lower fixed point is 32°F and upper fixed point is 212°F.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 3.
Do the values of coefficients of expansion differ, when the temperatures are measured on Centigrade scale or on Fahrenheit scale ?
Answer:
Yes. The coefficients of expansion depends on scale of temperature because
\(\frac{\alpha}{{ }^{\circ} \mathrm{C}}=\frac{9}{5} \alpha /{ }^{\circ} \mathrm{F}\)

Question 4.
Can a substance contract on heating ? Give an example.
Answer:
Yes. Rubber, type metal, cast iron contract on heating.

Question 5.
Why gaps are left between rails on a railway track ? [A.P. Mar. 17, 16]
Answer:
The length of the rails increases in summer due to high temperature. Therefore a gap is left to allow this expansion.

Question 6.
Why do liquids have no linear and areal expansions ?
Answer:
Liquids occupy the same shape of vessel. They do not have individual length and area. Hence, liquids have no linear and areal expansions.

Question 7.
What is latent heat of fusion ?
Answer:
The amount of heat per unit mass required to change a substance from solid into liquid at the same temperature and pressure is called the latent heat of fusion (Lf).

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 8.
What is latent heat of vapourisation ? [Mar. 13]
Answer:
The amount of heat per unit mass required to change a substance from the liquid to the vapour state at the same temperature and pressure is called the latent heat of vaporisation (Lv).

Question 9.
What is specific gas constant ? Is it same for all gases ?
Answer:
Universal gas constant per molecular mass is called specific gas constant.
i.e., r = \(\frac{\mathrm{R}}{\mathrm{m}}\). No, it is different for different gases.

Question 10.
What are the units and dimensions of specific gas constant ?
Answer:
The units of specific gas constant is J/Kg/K. Dimensional formula is (m0.L2t-2K1).

Question 11.
Why utensils are coated black ? Why the bottom of the utensils are made of copper ?
Answer:

  1. Utensils are coated black, because it is a good absorber of heat.
  2. Copper is a good conductor of heat. So, copper is used at the bottom of cooking utensils.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 12.
State Weins displacement law. [A.P. Mar. 17]
Answer:
The wavelength (λm) corresponding to maximum energy emitted by a black body is inversely proportional to its absolute temperature
i.e., λm ∝ \(\frac{1}{T}\)

Question 13.
Ventilators are provided in rooms just below the roof. Why ? [Mar. 14]
Answer:
Ventilators are provided in rooms just below the roof, because the hot air escapes out and fresh air enters into the rooms due to convection.

Question 14.
Does a body radiate heat at 0 K ? Does it radiate heat at 0°C ?
Answer:

  1. No. A body does not radiate heat at 0k.
  2. Yes. A body radiate heat at 0°C.

Question 15.
State the different modes of transmission of heat. Which of these modes require medium ?
Answer:
The different modes of transmission are : 1) conduction 2) convection and 3) radiation.
Among three modes conduction and convection require medium.

Question 16.
Define coefficient of thermal conductivity and temperature gradient.
Answer:
Coefficient of thermal conductivity : It is defined as the quantity of heat energy flowing per second between the opposite faces of cube of unit side, which are maintained at unit temperature difference.
Temperature gradient: The change of temperature per unit length of conductor is called temperature gradient.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 17.
What is thermal resistance of a conductor ? On what factors does it depend ?
Answer:
The resistance offered by the conductor for the flow of heat is called thermal resistance (R) of the conductor. R = \(\frac{\mathrm{d}}{\mathrm{kA}}\). It depends on

  1. The nature of the material, i.e., thermal conductivity (K).
  2. d; length of conductor along which heat flows and
  3. A; area of cross section of the conductor.

Question 18.
State the units and dimensions of coefficient of convection.
Answer:
The unit of coefficient of convection is, wm-2k-1.
Dimensional formula (m.L0T3θ-1).

Question 19.
Define emissive power and emissivity ?
Answer:
Emissive power : The energy flux emitted by unit surface area of a radiating body is known as emissive power (eλ).

Missivity (e): It is defined as the ratio of the emissive power of the body to that of black body at the same temperature.

Question 20.
What is greenhouse effect ? Explain global warming. [A.P. Mar. 15, 13]
Answer:
Greenhouse effect: When the earth receives sun light, it gets heated up and emits infrared radiation into air. CO2, CH4, N2O, O3, Chlorofluoro carbon (green house gases) present in the air absorbs the heat content of infrared radiation and keeps the earth warm. This is called green house effect.

Global warming : As CO2 content increases, more heat is retained in the atmosphere and the temperatures all over the world increases. This is called global warming.

Effects : a) Polar ice caps melt and fed more water in rivers and seas results in severe floods, b) In some areas, water resources dry up leading to drought conditions.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 21.
Define absorptive power of a body. What is the absorptive power of a perfect black body ?
Answer:
Absorptive power : At a given temperature and wavelength, the ratio of the amount of radiant energy absorbed to the amount of radiant energy incident in a wavelength range is called the absorptive power at that temperature and wavelength. Absorptive power of a perfect black body is 1.

Question 22.
State Newton’s law of cooling. [A.P. Mar. 18, 16; T.S. Mar. 18]
Answer:
The rate of loss of heat is directly proportional to the difference in temperature between the body and its surroundings provided the temperature difference is small. i.e., – \(\frac{\mathrm{dQ}}{\mathrm{dt}} \alpha\left(\mathrm{T}_B-\mathrm{T}_{\mathrm{S}}\right)\)

Question 23.
State the conditions under which Newton’s law of cooling is applicable.
Answer:

  1. Loss of heat is negligible by conduction and only when it is due to convection.
  2. Loss of heat occurs in a streamlined flow of air i.e., forced convection.
  3. Temperature of the body is uniformly distributed over it.

Question 24.
The roof of buildings are often painted white during summer. Why ? [T.S. Mar. 17, 15]
Answer:
The roof of buildings are painted white during summer, because it reflects more heat radiations and absorbs less heat radiations. Hence we feel comfort inside the house.

Short Answer Questions

Question 1.
Explain Celsius and Fahrenheit scales of temperature. Obtain the relation between Celsius and Fahrenheit scales of temperature.
Answer:
Centigrade (Celsius) scale of temperature: In the Celsius scale of temperature, the lower fixed point is called the ice point and is assigned the value 0°C. The upper fixed point is called the steam point and is assigned the value 100°C. The interval between these two points (i.e., 100°C – 0 = 100°C) is subdivided into 100 equal parts each one corresponding to 1°C.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 1
Fahrenheit scale of temperature : In the Fahrenheit scale of temperature, the lower fixed point is the ice point and is assigned a value 32°F and the upper fixed point is the staempoint and is assigned a value 212°F. The interval between these two points (i.e., 212°F – 32°F = 180°F) is subdivided into 180 equal parts, each one corresponding to 1°F.

Fahrenheit scale of temperature : In the Fahrenheit scale of temperature, the lower fixed point is the ice point and is assigned a value 32°F and the upper fixed point is the staempoint and is assigned a value 212°F. The interval between these two points (i.e., 212°F – 32°F = 180°F) is subdivided into 180 equal parts, each one corresponding to 1°F.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 2
Relation between Celsius and Fahreinheit scales of temperature:
Difference of 100 Celsius degrees = Difference of 180 Fahrenheit degress
When the temperature of a body is measured on both the Celsius and Fahrenheit scales, let the readings be tC and tF respectively. Then
\(\frac{t_c-0}{t^{100}}=\frac{t_F-32}{180} \Rightarrow \frac{t_C}{5}=\frac{t_F-32}{9}\)
C = \(\frac{5}{9}\) (F – 32)

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 2.
Two identical rectangular strips, one of copper and the other of steel, are riveted together to form a compound bar. What will happen on heating ?
Answer:
Bimetallic strip:
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 3
Two similar strips of copper and steel are revitted side by side as a compound strip called bimetallic strip. It is straight at ordinary temperatures. When the bimetallic strip is heated, copper expands more than steel. So, it bends with copper on convex side. When the bimetallic strip is cooled below room temperature, copper contracts more than steel and it bends with copper on concave side. Bimetallic strip is used in refrigerators, automatic iron, fire alarm etc.

Question 3.
Pendulum clocks generally go fast in winter and slow in summer. Why ?
Answer:
The time period of a pendulum at t1°C is T1 = 2π \(\sqrt{\frac{L_1}{g}}\) ………….. (1)
Where L1 is length of pendulum at t1°C.
If L2 is length of pendulum at t2°C,
then T2 = 2π \(\sqrt{\frac{L_2}{g}}\) ………………. (2)
\(\frac{(2)}{(1)}\) gives \(\frac{T_2}{T_1}=\sqrt{\frac{L_2}{L_1}}=\sqrt{\frac{L_1(1+\alpha t)}{L_1}}\)
Where a is the linear coefficient of expansion of pendulum clock. Where t = t2 – t1
\(\frac{T_2}{T_1}=\sqrt{(1+\alpha t)}=(1+\alpha t)^{\frac{1}{2}}\)
\(\frac{T_2}{T_1}=1+\frac{\alpha t}{2}\)
\(\frac{T_2}{T_1}-1=\frac{\alpha t}{2}\)
\(\frac{T_2-T_1}{T_1}=\frac{\alpha t}{2}\)
\(\frac{T_2-T_1}{T_1}\) = time lost by pendulum per second.
Due to expansion in length, during summer, time period increases or the clock looses time in summer. In winter due to fall in temperature, the length contracts, time period decreases, hence clock gains time.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 4.
In what way is the anomalous behaviour of water advantageous to acquatic animals ? [A.P. Mar. 18, Mar. 14]
Answer:
In cold countries, as atmospheric temperature decreases, the upper layers of the lakes, rivers etc., cool, contract and sink to the bottom (fig). This goes on until the whole of the water reaches the temperature of 4°C. When the top layers cool further temperature falls below 4°C, it expands and becomes lighter. It does not sink downwards and remains at the top. With further cooling the top layer gradually form ice at the top (fig). Ice and water are bad conductors of heat. So the lower layers are protected against freezing by the layers of ice and cold water at 1°C, 2°C and 3°C. This results in water remaining at the bottom at 4°C. So that aquatic animals survive in those layers of water.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 4

Question 5.
Explain conduction, convection and radiation with examples. [TS – Mar. ’18, ’16, ’15; AP – Mar. ’15]
Answer:
The heat is transmitted in three types. They are 1) Conduction 2) Convection 3) Radiation.

  1. Conduction : The process of transmission of heat from one place to other without actual movement of the particles of the medium is called conduction.
    Ex : When long iron rod is heated at one end, heat transmits to the other end.
  2. Convection : The process of transmission of heat from one place to another by the actual
    movement of the particles is called convection.
    Ex. : If water in a beaker is heated, the particles of water at the bottom receive the heat first. These particles expand, become lighter and rise up. At the same time colder and denser particles reach the bottom. They get in their turn heated and move up. This process is known as convection.
  3. Radiation : The process of transmission of heat from one place to another without any intervening medium is called radiation.
    Ex. : Earth receives heat radiations from the sun.

Long Answer Questions

Question 1.
State Boyle’s law and charle’s law. Hence, derive ideal gas equation which of two laws is better for the purpose of Thermometry and why ?
Answer:
P ∝ \(\frac{1}{\mathrm{V}}\)
⇒ PV = constants ⇒ P1V1 – P2V2
Charles law at constant volume : At constant volume the pressure of given mass of a gas is directly proportional to absolute temperature of gas.
P ∝ T
⇒ \(\frac{P}{T}\) = constant ⇒ \(\frac{P_1}{T_1}=\frac{P_2}{T_2}\)
Charles law at constant pressure : At constant pressure the volume of given mass of gas is directly proportional to absolute temperature.
V ∝ T
⇒ \(\frac{V}{T}\) = constant ⇒ \(\frac{V_1}{T_1}=\frac{V_2}{T_2}\)
Ideal gas equation : A gas which obeys all the gas laws at all temperature and all pressures is called an ideal gas.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 5
Consider are mole of a gas initially at a pressure P1 volume V1 and temperature T1 and Let P2, V2 and T2 be the final pressure, volume and absolute temperature T2.
From Boyle’s law, P1V1 = P2V2
⇒ V = \(\frac{P_1 V_1}{P_2}\) ………….. (1)
Now the gas is heated at constant pressure P2, then its volume changes from V to V2 and temperature changes from T1 and T2.
From charles law, \(\frac{V}{T_1}=\frac{V_2}{T_2} \Rightarrow V=\frac{V_2 T_1}{T_2}\) ………….. (2)
From (1) & (2) \(\frac{P_1 V_1}{P_2}=\frac{V_2 T_1}{T_2} \Rightarrow \frac{P_1 V_1}{T_1}=\frac{P_2 V_2}{T_2}\)
⇒ \(\frac{P V}{T}\) = constant ⇒ \(\frac{P V}{T}\) = R
Where ‘R’ is coniversal gas constant.
⇒ PV = RT
From ‘n’ gram moles PV = nRT. This law is called ideal gas equation.
Out of Boyle’s law, charles law is better for the purpose of thermometry because with increasing temperature, pressure and volume of gas also increase.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 2.
Explain thermal conductivity and coefficient of thermal conductivity. A copper bar of thermal conductivity 401 W/(mK) has one end at 104°C and the other end at 24°C. The length of the bar is 0.10 m and the cross – sectional area is 1.0 × 10-6 m-2. What is the rate of heat conduction, along the bar ?
Answer:
Thermal conductivity : Thermal conductivity of a solid body is ability to conduct heat in the body. Coefficient of thermal conductivity: The coefficient of thermal conductivity of a material may be defined as the quantity of heat energy flowing per second between the opposite faces of the cube of unit side, which are maintained at unit temperature difference.

Explanation of conduction : In steady state, conduction between the opposite faces which are at temperatures θ1°C and θ2°C separated by distance d is

  1. Directly proportional to area of cross section of the rod.
    Directly proportional to temperature difference (θ2 – θ1) between the opposite faces.
  2. Time of flow of heat, t
  3. Inversely proportional to the separation of faces ‘d’.
    AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 6
    ∴ Q ∝ \(\frac{\mathrm{A}\left(\theta_2-\theta_1\right) t}{\mathrm{~d}}\)
    or Q = \(\frac{K A\left(\theta_2-\theta_1\right) t}{d}\)
    K is called coefficient of thermal conductivity of the material.
    When A = 1; (θ2 – θ1) = 1; t = 1; d = 1
    ∴ K = Q

Problem:
Kc = 401 W/mK, θ2 = 104°C, θ2 = 24°C, d = 0.10 m, A = 1.6 × 10-6 m-2
Rate of heat conduction = \(\frac{Q}{t}=K_c A \frac{\left(\theta_2-\theta_1\right)}{d}\)
= 401 × 1 × 10-6 × (104-24) = 0.32 W

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 3.
State and explain Newton’s law of cooling. State the conditions under which Newton’s law of cooling is applicable. A body cools down from 60°C to 50°C in 5 minutes and to 40°C in another 8 minutes. Find the temperature of the surroundings.
Answer:
Expression for Newton’s law of cooling : Consider a hot body at temperature T. Let T0 be the temperature of its surroundings. According to Newton’s law of cooling,
Rate of loss of heat ∝ Temperature difference between the body and its surroundings.
\(\frac{-\mathrm{dQ}}{\mathrm{dt}}\) ∝ (T – T0)
\(\frac{-\mathrm{dQ}}{\mathrm{dt}}\) = k (T – T0) ⇒ (1) where k is proportionality constant. Let m be the mass and C the specific heat of the body at temperature T. If the temperature of the body falls by small amount dT in time dt, then the amount of heat lost is
dQ = mc dT
∴ Rate of loss of heat is given by
\(\frac{\mathrm{dQ}}{\mathrm{dt}}\) = mc \(\frac{\mathrm{dT}}{\mathrm{dt}}\) ………….. (2)
putting (2) in (1) ⇒
-mc \(\frac{\mathrm{dT}}{\mathrm{dt}}\) = k(T – T0)
\(\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{k}}{\mathrm{mc}}\) (T – T0) = -K(T – T0)
where K = \(\frac{\mathrm{k}}{\mathrm{mc}}\) is another constant.
⇒ \(\frac{d T}{\left(T-T_0\right)}\) = – K dt
on integrating both sides, we get
\(\int \frac{d T}{\left(T-T_0\right)}=-K \int d t\)
loge (T – T0) = – Kt + c …………… (3)
T – T0 = e-Kt + c
T = T0 + ec e-Kt
T = T0 + Ce-Kt ……………… (4)
Where c is integration constant and C = ec
equations (1), (2), (3) and (4) are the different expressions for Newton’s law of cooling.

Explanation of Graphs:
1) If we plot a graph by taking equation (4) different values of temperature difference ∆T = T – T0 along y – axis and the corresponding values of t along X – axis, we get a curve of the form shown in figure. It clearly shows that the rate of cooling is higher initially and then decreases as the temperature of the body falls.
Curve showing cooling of hot water with time.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 7
2) More over, the equation (3) is of the form y = mx + c. So if we plot a graph, by taking loge(T – T0) along Y – axis and time t along x – axis, we must get a straight line, as shown in figure. It has a negative slope equal to – K and intercept on Y – axis equal to C.
In both of the above situations, Newton’s law of cooling stands verified.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 8
Newton’s law of cooling is applicable :

  1. Loss of heat is negligible by conduction and only when it is due to convection.
  2. Loss of heat occurs in a stream lined flow of air i.e., forced convection.
  3. Temperature of the body is uniformly distributed over it.
  4. Temperature differences are moderate i.e., upto 30 K, however if heat body is due to forced convection the law is valid for large differences of temperature also.
    AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 9
    ∴ Surrounding temperature, θ0 = \(\frac{85^{\circ} \mathrm{C}}{3}\) = 28.33°C

Problems

Question 1.
What is the temperature for which the readings on Kelvin and Fahrenheit scales are same?
Answer:
The relation between Kelvin and Fahrenheit scales is given by
\(\frac{K-273.15}{100}=\frac{F-32}{180}\)
but K = F
\(\frac{F-273.15}{100}=\frac{F-32}{180}\)
F – 273.15 = \(\frac{5}{9}\) F – \(\frac{160}{9}\)
F – \(\frac{5}{9}\) F = 273.15 – \(\frac{160}{9}\)
= 273.15 – 17.77
\(\frac{4F}{9}\) = 255.38
∴ F = \(\frac{9}{4}\) (255.38)
= 574.6°F

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 2.
Find the increase in temperature of aluminium rod if its length ¡s to be increased by 1%. (a for aluminium = 25 × 10-6/0 C). [A.P (Mar. ‘15)]
Answer:
Percentage increase in length = \(\frac{l_2-l_1}{l_1}\) × 100
= α(t2 – t1) × 100 [∵ \(\frac{l_2-l_1}{l_1}\) = α(t2 – t1)]
Here, percentage increase in length = 1,
α = 25 × 10-6/ °C
1 = 25 × 10-6(t2 – t1) × 100
t2 – t1 = \(\frac{1}{25 \times 10^{-4}}=\frac{10^4}{25}\) = 400°C

Question 3.
How much steam at 100°C is to be passed into water of mass 100 g at 20°C to raise its temperature by 5°C ? (Latent heat of steam is 540 cal/g and specific heat of water is 1 cal/g°C).
Answer:
In the method of mixtures,
Heat lost by steam = Heat gained by water
mSLS + mSS(100 – 1) = mWS (t – 20)
Where mS is the mass of steam, LS is the latent heat of steam, S is the specific heat of steam and mW is the mass of water.
Here, LS = 540 cal/g
S = 1 cal/g°C;
mW = 100 g
t = 20 + 5 = 25°C
mS × 540 + mS × 1 × (100 – 25) = 100 × 1 × (25 – 20)
615 mS = 500
mS = \(\frac{500}{615}\)
= 0.813 g.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 4.
2 kg of air is heated at constant volume. The temperature of air is increased from 293 K to 313 K. If the specific heat of air at constant volume is 0.718 kJ/kgK, find the amount of heat absorbed in kJ and kcal.
(J = 4.2 kJ/kcal).
Answer:
Here, M = 2 kg
dT = 313- 293 = 20 K
CV = 0.718 × 103 J/Kg – K
J = 4.2 KJ/Kcal
CV = \(\frac{1}{\mathrm{~m}} \frac{\mathrm{d} \theta}{\mathrm{dt}}\)
dθ = mCVdT
= 0.718 × 103 × 2 × 20
= 28720 J
dθ = 28.72 KJ
dθ = \(\frac{28720}{4.2 \times 10^3}\)
= 6.838 Kcal.

Question 5.
A dock, with a brass pendulum, keeps correct time at 20°C, but loses 8.212 s per day, when the temperature rises to 30°C. Calculate the coefficient of linear expansion of brass.
Answer:
Here t1 = 20°C, t2 = 30°C
Loss of time per day = 8.212 sec
Loss of time per day = \(\frac{1}{2}\) α (t2 – t1) × 86,400
8.212 = \(\frac{1}{2}\) α (30 – 20) × 86,400
∴ α = \(\frac{16.424}{864 \times 10^3}\)
= 19 × 10-6/C°

Question 6.
A body cools from 60°C to 40°C in 7 minutes. What will be its temperature after next 7 minutes if the temperature of its surroundings is 10°C ?
Answer:
Rate of cooling \(\frac{\mathrm{d} \theta}{\mathrm{dt}}\) = K(θav – θ0)
Case (i) :
Given, .
θ1 = 60°C, θ2 = 40°C, θ0 = 10°C, t = 7 min
⇒ \(\frac{60^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}}{7}=K\left[\frac{60^{\circ} \mathrm{C}+40^{\circ} \mathrm{C}}{2}-10^{\circ} \mathrm{C}\right]\)
\(\frac{20}{7}\) = K[50 – 10]
⇒ \(\frac{20}{7}\) = K × 40
∴ K = \(\frac{1}{14}\) ……………. (1)

Case (ii) :
Given,
θ1 = 40°C, θ0 = 10°C, t = 7 min, θ2 = ?
⇒ \(\frac{40-\theta_2}{7}=K\left[\frac{40+\theta_2}{2}-10\right]\)
\(\frac{40-\theta_2}{7}=\frac{1}{14}\left[\frac{40+\theta_2}{2}-10\right]\)
80 – 2θ2 = \(\frac{40+\theta_2-20}{2}\)
160 – 4θ2 = 20 + θ2
2 = 140
∴ θ2 = \(\frac{140}{5}\) = 28°C

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 7.
If the maximum intensity of radiation for a black body is found at 2.65 pm what is the temperature of the radiating body ? (Wien’s constant = 2.9 × 10-3 mK)
Answer:
λmax = 2.65 pm = 2.65 × 10-6m
Wien’s constant (b) = 2.90 × 10-3 mk
λmax T = b(constant)
T = \(\frac{b}{\lambda_{\max }}=\frac{2.9 \times 10^{-3}}{2.65 \times 10^{-6}}\)
= 1094 K.

Additional Problems

Question 1.
The triple points of neon and carbon dioxide are 24.57 K and 216.55 K respectively. Express these temperatures on the Celsius and Fahrenheit scales.
Answer:
Relation between kelvin scale and Celsius scale is TC = TK – 273.15
Where TC.TK = temperature on Celsius and kelvin scales respectively
For Neon TC = 24.57 – 273.15 = – 248.58°C
For CO2 TC = 216.55 – 273.15 = -56.60°C
Relation between Kelvin and Fahrenheit scales is
\(\frac{T_F-32}{180}=\frac{T_K-273.15}{100}\)
TF = \(\frac{180}{100}\) (TK – 273.15) + 32
FQ or Neon TF
= \(\frac{180}{100}\)(24.57 – 273.15) + 32 = – 415.44° F
FQ or CO2 TF = \(\frac{180}{100}\) (216.55 – 273.15) + 32
= – 69.88° F

Question 2.
Two absolute scales A and B have triple points of water defined to be 200 A and 350 B. What is the relation between TA and TB ?
Answer:
Given triple point of water on scale A = 200
A triple point of water on scale B = 350 B
As per question 200 A = 350, B = 273.16 K
(Or)
IA = \(\frac{273.16}{200}\) K and IB = \(\frac{273.16}{350}\) K
If TA and TB represent the triple point of water on two scales A and B then
\(\frac{273.16}{200}\) TA = \(\frac{273.16}{350}\)TB (Or) \(\frac{T_A}{T_B}=\frac{200}{350}=\frac{4}{7}\)
(Or) TA = \(\frac{4}{7}\) TB

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 3.
The electrical resistance in ohms of a certain thermometer varies with temperature according to the approximate law:
R = R0[1 + α(T – T0)]
The resistance is 101.6 Ω at the triple-point of water 273.16 K and 165.5 Ω at the normal melting point of lead (600.5 K). What is the temperature when the resistance is 123.4 Ω ?
Answer:
Here, R0 = 101. 6 Ω, T0 = 273.16 K
Case (i) R1 = 165.5 Ω, T1 = 600.5 K
Case (ii) R2 = 123.4 Ω; T2 = ?
Using the relation R = R0(1 + α(T – T0))
Case (i):
165.5 = 101.6(1 + α(600.5-273.16))
α = \(\frac{165.5-101.6}{101.6 \times(600.5-273.16)}\)
= \(\frac{63.9}{101.6 \times 327.34}\)

Case (ii): 123.4 = 101.6(1 + α(T2 – 273.16))
(Or)
123.4 = 101.6
(1 + \(\frac{63.9}{101.6 \times 327.34}\) (T2 – 273.16))
= 101.6 + \(\frac{63.9}{327.34}\) (T2 – 273.16)
T2 = \(\frac{(123.4-101.6) \times 327.34}{63.9}\) + 273.16
= 111.67 + 273.16 = 384.83 K

Question 4.
Answer the following :
a) The triple-point of water is a standard fixed point in modern thermometry. Why? What is wrong in taking the melting point of ice and the boiling point of water as standard fixed points (as was originally done in the Celsius scale) ?
b) There were two fixed points in the original Celsius scale as mentioned above which were assigned the number 0°C and 100°C respectively. On the absolute scale, one of the fixed points is the triple-point of water, which on the Kelvin absolute scale is assigned the number 273.16 K. What is the other fixed point on this (Kelvin) scale ?
c) The absolute temperature (Kelvin scale) T is related to the temperature tC on the Celsius scale by
tc = T – 273.15
Why do we have 273.15 in this relation and not 273.16 ?
Answer:
a) This is on account of the fact that the triple point of water has a unique value i.e., 273.16 K at a unique point, where exists unique values of pressure and volume. On the other hand, the melting point of ice and boiling point of water do not have unique set of value as they change in pressure and volume.

b) The other fixed point on the absolute scale is the absolute zero itself.

c) On Celsius 0°C corresponds to melting points of ice of normal pressure. The corresponding value of absolute temperature is 273.15 K. The temperature 273.16 K corresponds to the triple point of water.
From the given relation the corresponding value of triple point of water on Celsius scale
= 273.16 – 273. 15 = 0.01°C.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 5.
Two. ideal gas thermometers A and B use oxygen and hydrogen respectively. The following observations are made :
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 10
a) What is the absolute temperature of normal melting point of sulphur as read by thermometers A and B?
b) What do you think is the reason behind the slight difference in answers of thermoineters A and B ? (The thermometers are not faulty). What further procedure is needed in the experiment to reduce the discrepancy between the two readings ?
Answer:
a). Let T be the melting point of sulphur, for water Ttr = 273.16 K
For thermometer A, T = P/Ptr × 273.16
= \(\frac{1.797 \times 10^5}{1.250 \times 10^5}\) × 273.16 = 392.69 K
For thermometer B, T = P/Ptr × 273.16
= \(\frac{0.287 \times 10^5}{0.200 \times 10^5}\) × 273.16 = 391.98 K

b) The cause of slight different answers is that the oxygen and hydrogen gases are not perfectly ideal. To reduce this discrepancy, the readings should be at lower and lower pressure as in that case, the gases approach to the ideal gas behaviour.

Question 6.
A steel tape 1 m long is correctly calibrated for a temperature of 27.0°C. The length of a steel rod measured by this tape is found to be 63.0 cm on a hot day when the temperature is 45.0°C. What is the actual length of the steel rod on that day ? What is the length of the same steel rod on a day when the temperature is 27.0°C ? Coefficient of linear expansion of steel = 1.20 × 10-5 K-1.
Answer:
Length of steell tape at 27°C is 100 cm i.e.
L = 100 cm and T = 27°C
The length of steel tape at 45°C is L1 = L + ∆L
= L + αL∆T
= 100 + (1.20 × 10-5) × 100 × (45° – 27)
= 100.0216 cm
Length of 1 cm mark at 27°C on this scale, at 45°C
= 100.0216/100 cm
Length of 63 cm measured’ by this tape at 45°C will be
= \(\frac{100.0216}{100}\) × 63 = 63.0136 cm
Length of the same steel rod on a day when the temperature is 27°C = 63 × 1 = 63 cm.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 7.
A large steel wheel is to be fitted on to a shaft of the same material. At 27°C, the outer diameter of the shaft is 8.70 cm and the diameter of the central hole in the wheel is 8.69 cm. The shaft is cooled using ‘dry ice’. At what temperature of the shaft does the wheel slip on the shaft ? Assume coefficient of linear expansion of the steel to be constant over the required temperature range :
αsteel = 1.20 × 10-5K-1.
Answer:
Here T1 = 27°C = 27 + 273 = 300 K
Length at temperature, T1K = LT1 = 8.70 cm
Length at temperature, T2K = LT2 – 8.69 cm
Change in length = LT2 – LT1 = LT2 α(T2 – T2)
Or 8.69 – 8.70 = 8.70 × (1.20 × 10-5) × (T2 – 300)
Or T2 – 300 = \(\frac{0.01}{8.70 \times 1.2 \times 10^{-5}}\) = -95.8
Or T2 = 300 – 95.8 = 204.2 K = -68.8°C

Question 8.
A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at 27.0°C. What is the change in the diameter of the hole when the sheet is heated to 227°C ? Coefficient of linear expansion of copper = 1.70 × 10-5K-1.
Answer:
In this problem superfical expansion of copper sheet will be involved on heating. Here, area of hole at 227°C, then area of the hole at 227°C,
S2 = \(\frac{\pi \mathrm{D}_2^2}{4}\)cm2.
Coefficient of superficial expansion of copper is β = 2α = 2 × 1.70 × 10-5 = 3.4 × 10-5 c1
Increase in area = S2 – S1 = βS1 ∆T (or)
S2 = S1 + βS1 ∆T
= S1(1 + β∆T)
(Or)
\(\frac{\pi \mathrm{D}_2^2}{4}=\frac{\pi}{4}\) (4.24)2 [1 + 3.4 × 10-5 (228 – 27)]
(Or)
D22 = (4.24)2 × 1.0068
D2 = 4.2544 cm
Change in diameter = D2 – D1
= 4.2544 – 4.24
= 0.0144 cm.

Question 9.
A brass wire 1.8 m long at 27°C is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of -39°C, what is the tension developed in the wire, if its diameter is 2.0 mm ? Co-efficient of linear expansion of brass = 2.0 × 10-5K-1; Young’s modulus of brass = 0.91 × 1011 Pa.
Answer:
Here L = 1.8m, T1 = 27°C, T2 = -39°C, r = 1
mm = 10-3m, F = ?
α = 2 × 10-5C-1, y = 0.91 × 1011 N/m2
From y = \(\frac{\mathrm{FL}}{a \Delta L}\), ⇒ ∆L = \(\frac{\mathrm{FL}}{\mathrm{ay}}\)
Also ∆L = αL∆T = ∴ \(\frac{\mathrm{FL}}{\mathrm{ay}}\) = αL∆T
(Or) F = α∆Tay = α(T2 – T1) πr2y
= 2 × 10-5 × (-39 – 27) × (10-3)2 × 0.91 × 1011
= -3.77 × 10-2 N
Negative sign indicates that the force is inward due to contraction of the wire.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 10.
A brass rod of length 50 cm and diameter 3.0 mm is joined to a steel rod of the same length and diameter. What is the change in length of the combined rod at 250°C, if the original lengths are at 40.0°C ? Is there a ‘thermal stress’ developed at the junction ? The ends of the rod are free to expand (Co-efficient of linear expansion of brass = 2,0 × 10-5K-1, steel = 1.2 × 10-5K-1.
Answer:
∆L1 = L1α1∆T = 50 × (2.10 × 10-5) (250 – 40) = 0.2205 cm
∆L2 = L2α2∆T
= 50 × (1.2 × 10-5) (250 – 40) = 0.216 cm
∴ Change in length of combined rod
= ∆L1 + ∆L2
= 0.220 + 0.126 = 0.346 cm

Question 11.
The coefficient of volume expansion of glycerin is 49 × 10-5K-1. What is the fractional change in its density for a 30°C rise in temperature ?
Answer:
Here r = 49 × 10-5C-1, ∆T = 30°C .
As V1 = V + ∆V = V(1 + r∆T)
∴ V1 = V(1 + 49 + 10-5 × 30) = 1.0147 V
As P = \(\frac{m}{V}\), p1 = \(\frac{m}{V^1}\) = \(\frac{\mathrm{m}}{1.0147 \mathrm{~V}}\)= 09855 P
Fractional change in density = \(\frac{\rho-\rho^{\prime}}{\rho}\)
= \(\frac{\rho-0.9855 \rho}{\rho}\)
= 0.0145

Question 12.
A 10 kW drilling machine is used to drill a bore in a small aluminium block of mass 8.0 kg. How much is the rise in temperature of the block in 2.5 minutes, assuming 50% of power is used up in heating the machine itself or lost to the surroundings. Specific heat of aluminium = 0.91 Jg-1K-1.
Answer:
Here p = 10 kw = 105w,
Mass m = 8.0 kg = 8 × 103 g
Rise in temp; ∆T = ?
time t = 2.5 min = 2.5 × 60 sec
Sp. heat C = 0.91 Jg-1°C-1
Total energy = p × t = 104 × 150
= 15 × 105 J
As 50% of energy is lost
∴ Energy available ∆Q = \(\frac{1}{2}\) × 15 × 105
= 7.5 × 105 J
As ∆Q = mc ∆T
∴ ∆T = \(\frac{\Delta Q}{\mathrm{mc}}=\frac{7.5 \times 10^5}{8 \times 10^3 \times 0.91}\) = 103°C

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 13.
A copper block of mass 2.5 kg is heated in a furnace to a temperature of 500°C and then placed on a large ice block. What is the maximum amount of ice that can melt ? (Specific heat of copper = 0.39 Jg-1K-1 heat of fusion of water = 335 Jg-1.
Answer:
Here, mass of copper block m = 2.5 kg = 2500 kg
Fall in temperature ∆T = 500 – 0 = 500°C
Specific heat of copper C = 0.39 Jg-1°C-1
Latent heat of fusion L = 335 Jg-1
Let the mass of ice melted by m1
As heat gained by ice = Heat lost by copper
m-1L = Mc∆T
m-1 = \(\frac{\mathrm{mC} \Delta \mathrm{T}}{\mathrm{L}}\)
m1 = \(\frac{2500 \times 0.39 \times 500}{335}\)
= 1500 g = 1.5 kg

Question 14.
In an experiment on the specific heat of a metal, a 0.20 kg block of the metal at 150°C is dropped in a copper calorimeter (of water equivalent 0.025 kg) containing 150 cm3 of water at 27°C. The final temperature is 40°C. Compute the specific heat of the metal. If heat losses to the surroundings are not negligible, is your answer greater or smaller than the actual value for specific heat of the metal ?
Answer:
Here, mass of metal, m = 0.20 kg = 200 g
Fall in temperature of metal ∆T = 150 – 40
= 110°C
If L is specific heat of metal, then heat lost by the metal
∆Q = mc∆T = 200 × L × 110
Volume of water = 150 C.C
Mass of water m1 = 150 g
Water equivalent of calorimeter, w = 0.025 kg = 25 kg
Rise in temp of water and calorimeter
∆T1 = 40 – 27 = 13°C
Heat gained by water and calorimeter,
∆Q1 = (m1 + w)T1
= (150 + 25) × 13 = 175 × 13
As ∆Q = ∆Q1
∴ From (i) and (ii)
200 × C × 110 = 175 × 13
C = \(\frac{175 \times 13}{200 \times 110}\) ≈ 0.1
(Or)
If some heat is lost to the sorroundings, value of L is so obtained will be less than the actual value of L.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 15.
Given below are observations on molar specific heats at room temperature of some common gases.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 11
The measured molar specific heats of these gases are markedly different from those for monatomic gases. Typically, molar specific heat of a monatomic gas is 2.92 cal/mol K. Explain this difference. What can you infer from the somewhat larger (than the rest) value for chlorine ?
Answer:
The gases which are listed in the above table are diatomic gases and not mono atomic gases. For diatomic gases, molar specific heat
= \(\frac{5}{2}\) R = \(\frac{5}{2}\) × 1.98 = 4.95, which agrees fairly well with all observations listed in the . table except for chlorine. A monoatomic gas molecules has only the transnational motion. A diatomic gas molecules, a part from translation motion. The vibrational as well as rotational motion is also possible. Therefore to raise the temperature of 1 mole of diatomic gas through 1°C heat is also to be supplied increase not only translation energy but also rotational and vibrational energies. Hence molar specific heat of diatomic gas is greater than that for monoatomic gas. The higher value of molar specific heat of chlorine as compared to hydrogen, nitrogen, oxygen etc. Shows that for chlorine molecule, at room temperature vibrational motion. Also occurs along with translational and rotational motions. Where as other diatomic molecules at room temperature usually have rotational motion apart from their translational motion. This the reason that chlorine has some what larger value of molar specific heat.

Question 16.
Answer the following questions based on the P-T phase diagram of carbon dioxide :
a) At what temperature and pressure can the solid, liquid and vapour phases of CO2 co-exist in equilibrium ?
b) What is the effect of decrease of pressure on the fusion and boiling point of CO2 ?
c) What are the critical temperature and pressure for CO2 ? What is their significance ?
d) Is CO2 solid, liquid or gas at (a) – 70°C under 1 atm, (b) -60°C under 10 atm, (c) 15°C under 56 atm ?
Answer:
a) The solid, liquid and vapour phase of carbon dioxide exist in equilibrium at the point i.e., temperature = -56.6°C and pressure = 5.11 atm.

b) With the decrease in pressure, both the fusion and boiling point of carbondioxide will decrease.

c) For carbondioxide, the critical tempera-ture is 31,1°C and critical pressure is 73.0 atm. If the temp of CO2 is more than 31.1°C. It cannot be liquified, however large pressure we may apply.

d) Carbondioxide will be (a) a vapour at – 70°C under 1 atm (b) a solid at 6°C under 10 atm (c) a liquid at 15°C under 56 atm.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 17.
Answer the following questions based on the P – T phase diagram of CO2 :
a) CO2 at 1 atm pressure and temperature – 60°C is compressed isothermally. Does it go through a liquid phase ?
b) What happens when CO2 at 4 atm pressure is cooled from room tem-perature at constant pressure ?
c) Describe qualitatively the changes in a given mass of solid CO2 at 10 atm pressure and temperature – 65°C as it is heated up to room temperature at constant pressure.
d) CO2 is heated to a temperature 70°C and compressed isothermally. What changes in its properties, do you expect to observe ?
Answer:
a) Since the temp – 60°C lies to the left of 56.6°C on the curve i.e. lies in the region of vapour and solid phase. So CO2 will condense directly into solid with out becoming liquid.

b) Since the pressure 4 atm is less than 5.11 atm. The carbondioxde will condenses directly into solid without becoming liquid.

c) When a solid CO2 at 10 atm. Pressure and -65°C temp is heated, It is first converted into a liquid. A further increase in temperature brings it to the vapour phase. At P = 10 atm. If a horizontal line is drawn parallel to the T-axis. Then the points of intersection of this line with the fusion and vapourisation curve will give the fu-sion and boiling point of CO2 at 10 atm.

d) Since 70°C is higher than the critical temperature of CO2. So the CO2 gas can not be converted into liquid state on being compressed isothermally at 70°C. It will remain in the vapour state. Nowever the gas will depart more and more now its perfect gas behavious with the increase in pressure.

Question 18.
A child running a temperature of 101 °F is given an antipyrin (i.e. a medicine that lowers fever) which causes an increase in the rate of evaporation of sweat from his body. If the fever is brought down to 98°F in 20 min, what is the average rate of extra evaporation caused, by the drug. Assume the evaporation mechanism to be the only way by which heat is lost. The mass of the child is 30 kg. The specific heat of human body is approximately the same as that of water and latent heat of evaporation of water at that temperature is about 580 cal g-1.
Answer:
Here fall in temp = ∆T = 101 – 98 = 3°F
= 3 × \(\frac{5}{3}\)°C = \(\frac{5}{3}\)°C
Mass of child M = 30 kg
Sp. heat of human body = Sp heat of water
C = 1000 cal.kg-1C-1
∴ Heat last by the body of child, ∆Q = mC∆T
= 30 × 1000 × \(\frac{5}{3}\) = 5000 calories
If m be the mass of water evapourated in 20 min then m1L = ∆Q
m1 = \(\frac{\Delta Q}{L}=\frac{5000}{580}\) = 86.2 g
∴ Average rate of extra evapouration = \(\frac{86.2}{20}\)
= 4.31 gmin-1

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 19.
A ‘thermacole’ icebox is a cheap and efficient method for storing small quantities of cooked food in summer in particular. A cubical icebox of side 30 cm has a thickness of 5.0 cm. If 4.0 kg of ice is put in the box, estimate the amount of ice remaining after 6 h. The outside temperature is 45°C and co-efficient of thermal conductivity of thermacole is 0.01 Js-1m-1 K-1. [Heat of fusion of wafer = 335 × 103 J kg-1]
Answer:
Here length of each side l = 30 cm = 0.3 m
Thickness of each side ∆x = 5 cm = 0.05 m
Total surface area through which heat enters into the box
A = 6 l2 = 6 × 0.3 × 0.3 = 0 Jum2
Temp.diff ∆T = 45 – 0 = 45°C,
K = 0.01 JS-1m-1°C-1
Time ∆T = 6 hrs = 6 × 60 × 60 S
Latent heat of fusion L = 335 × 103 J/kg
Let m be the mass of ice melted in this time
∆Q = mL = KA \(\left(\frac{\Delta \mathrm{T}}{\Delta \mathrm{x}}\right)\) ∆t
m = kA \(\left(\frac{\Delta T}{\Delta \mathrm{T}}\right) \frac{\Delta \mathrm{t}}{\mathrm{L}}\) = 0.01 × 0.54 × \(\frac{45}{0.05}\) × \(\frac{6 \times 60 \times 60}{335 \times 10^3}\) = 0.313 kg
Mass of ice left = 4 – 0.313 = 3.687 kg

Question 20.
A brass boiler has a base area of 0.15 m2 and thickness 1.0 cm. It boils water at the rate of 6.0 kg/min when placed on a gas stove. Estimate the temperature of the part of the flame in contact with the boiler. Thermal conductivity of brass = 109 Js-1m-1 K-1: Heat of vaporisation of water = 2256 × 103 Jkg-1.
Answer:
Were A = 0.15 m2 ∆x = 1.0 m = 10-2 m
\(\frac{\Delta Q}{\Delta t}=\frac{6 \times 10^3 \times 2256}{60}\) JS-1 = 2256 × 102 JS-1
K = 609 JS-1m-1°C-1, ∆T = (t – 100)
From \(\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=\mathrm{KA}\left(\frac{\Delta \mathrm{T}}{\Delta \mathrm{x}}\right)\)
2256 × 102 = 609 × 0.15 \(\frac{(t-100)}{10^{-2}}\)
t – 100 = \(\frac{2256}{609 \times 0.15}\) = 2470 t
t = 24.70

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 21.
Explain why :
a) a body with large reflectivity is a poor emitter.
b) a brass tumbler feels much colder than a wooden tray on a chilly day.
c) an optical pyrometer (for measuring high temperatures) calibrated for an ideal black body radiation gives too low a value for the temperature of a red hot iron piece in the open, but gives a correct value for the temperature when the same piece is in the furnace.
d) the earth without its atmosphere would be inhospitably cold.
e) healting systems based on circulation of steam are more efficient in warming a building than those based on circulation of hot water.
Answer:
a) This is because a body with large refelectivity is a poor absorber of heat and poor absorbers of heat are poor imilters.

b) When we touch a brass tumbler on a chill day; heat flows from our body to the tumbler quickly cas thermal conductivity or brass is very high and as a result, it appears colder. On the other hand as the wood is bad conductor, heat does not flow to the wooden tray from our body, on touching it.

c) When the red hot iron pieces is in the oven, its temperature TK is the given by the relation.
E = αT4 But if the red hot iron piece is in the open having the surrounding temperature T0, its energy is radiated according to relation E1 = α(T4 – T40). As the working principle of optical pysometer is based on the fact that the brightness of – a glowing surface of a body depends , upon its temperature. Therefore, pysometes gives too low a value for the temperature of red iron in the open.

d) The lower layer’s of Earth’s atmosphere reflect infrared radiations from earth back to the surface of the earth. Thus the heat radiation recieved by the earth from the sun during the day are kept trapped by the atm. If atmosphere of earth were not there, its surface would become too cold to live.

e) Steam at 100°C possess more heat than the same mass of water at 100°C possess 540 calories of heat more than possessed by 1 gm of ware at 100°C. That is why heating systems based on circulation of stream are more efficient than those based on circulation of hot water.

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 22.
A body cools from 80°C to 50°C in 5 minutes. Calculate the time it takes to cool from 60°C to 30°C. The temperature of the surroundings is 20°C.
Answer:
\(\frac{\mathrm{d} \theta}{\mathrm{dt}}\) = K [θav – θ0]
\(\frac{80-50}{5}\) = K(65 – 20)
⇒ \(\frac{30}{5}\) = K × 45 = K = \(\frac{2}{15}\)
\(\frac{60-30}{t}=\frac{2}{15}[45-20]\)
\(\frac{30}{t}=\frac{2}{15} \times 15\)
t = 5 min
Time of cooling is given by t = \(\frac{2.3026}{k}\) log10
\(\frac{T_1-T_0}{T_2-T_0}\)
As per question condition (i) T1 = 80°C, T2 = 50°C, T0 = 20°C, t = 5 min
5 × 60 = \(\frac{2.3026}{K} \log _{10} \frac{80-20}{50-20}\)
= \(\frac{2.3026}{k} \log _{10^2}\) ……………. (2)
As per question condition (i) T1 = 60°C, T2 = 30°C, T0 = 20°C, t = ?
t = \(\frac{2.3026}{K} \log _{10} \frac{60-20}{30-20}\)
= \(\frac{2.3026}{k} \log _{10^4}\) ……………. (3)
Div (3) by (2) we get
\(\frac{t}{5 \times 60}=\frac{\log _{10^4}}{\log _{10^2}}=\frac{0.6021}{0.3010}\) = 2
(Or) t = 5 × 60 × 2 = 10 × 60 s
= 10 min

Textual Examples

Question 1.
Show that the coefficient of areal expansions. (∆A/A)/∆T, of rectangular sheet of the solid is twice its linear expansivity, α1.
Answer:
∆A3 = (∆a) (∆b)
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 12
When the temperature increases by ∆T, a increases by ∆a = α1a ∆T and b increases by ∆b = α1b ∆T. From fig. the increase in area
∆A = ∆A1 + ∆A2 + ∆A3
∆A = a ∆b + b ∆a + (∆a) (∆b)
= a α1b ∆T + b α1a ∆T + (α1)2 ab(∆T)2
= α1ab ∆T(2 + α1∆T)
= α1A ∆T(2 + α1∆T)
Since α1 = 10-5 K-1, from Table 12.1, the product α1∆T for fractional temperature is small in comparision with 2 and may be neglected.
Hence,
\(\left(\frac{\Delta \mathrm{A}}{\mathrm{A}}\right) \frac{1}{\Delta \mathrm{T}}\) ≈ 2α1

Question 2.
A blacksmith fixes iron ring on the rim of the wooden wheel of a bullock cart. The diametbr of the rim and the iron ring are 5.243 m and 5.231 m respectively at 27°C. To what temperature should the ring be heated so as to fit the rim of the wheel ?
Answer:
Given,
T1 = 27°C
LT1 = 5.231 m
LT2 = 5.243 m
So,
LT2 = LT1 [1 + α1(T2 – T1)]
5.243 m = 5.231 m[1 + 1.20 × 10-5 K-1 (T2 – 27°C)]
or T2 = 218°C

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 3.
A sphere of aluminium of 0.047 kg is placed for sufficient time in a vessel containing boiling water, so that the sphere is at 100°C. It is then immediately transfered to 0.14 kg copper calorimeter containing 0.25 kg of water at 20°C. The temperature of water rises and attains a steady state at 23°C. Calculate the specific heat capacity of aluminium.
Answer:
Mass of aluminium sphere (m.,) = 0.047 kg
Initial temp, of aluminium sphere = 100°C
Final temp. = 23°C
Change in temp. (∆T) = (100°C – 23°C)
= 77°C
Let specific heat capacity of aluminium be sAl. The amount of heat lost by the aluminium sphere = m1sAl ∆T = 0.047 kg × sAl × 77°C s ……………. (i)
Mass of water (m2) = 0.25 kg
Mass of calorimeter (m3) = 0.14 kg
Initial temp, of water and calorimeter = 20°C
Final temp, of the mixture = 23°C
Change in temp. (∆T2) = 23°C – 20°C = 3°C
Specific heat capacity of water (sw) from table
12.3 = 4.18 × 103 J kg-1 K-1
Specific heat capacity of copper calorimeter = 0.386 × 103 J kg-1 K-1
The amount of heat gained by water and calorimeter = m2sw ∆T2 + m3scu ∆T2 = (m2sw + m3scu) (∆T2)
= (0.25 kg × 4.18 × 103 J kg-1 K-1 + 0.14 kg × 0.386 × 103 J kg-1 K-1) (23°C – 20°C) ………………… (ii)
In the steady state heat lost by the aluminium sphere = heat gained by water + heat gained by calorimeter.
So, from (i) and (ii)
0.047 kg × sAl × 77°C = (0.25 kg × 4.18 × 103 J kg-1 K-1 + 0.14 kg × 0.386 × 103 J kg-1 K-1) (3°C)
sAl = 0.911 kJ kg-1 K-1

Question 4.
When 0.15 kg of ice of 0°C mixed with 0.30 kg of water at 50°C in a container, the resulting temperature is 6.7°C. Calculate the heat of fusion of ice.
(swater = 4186 J kg-1 K-1)
Answer:
Heat lost by water = mswf – θi)w
= (0.30 kg) (4186 kg-1 K-1) (50.0°C – 6.7°C)
= 54376.14 J
Heat required to melt ice = m2Lf = (0.15 kg) Lf
Heat required to raise temperature of ice water to final temperature
= mIswf – θi)I
= (0.15 kg) (4186 J kg-1 K-1) (6.7°C – 0°C)
= 4206.93 J
Heat lost = heat gained
54376.14 J = (0.15 Kg)Lf + 4206.93 J
Lf = 3.34 × 105 J kg-1

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 5.
Calculate the heat required to convert 3 kg of ice at -12°C kept in a calorimeter-to steam at 100°C at atmospheric pressure. Given specific heat capacity of ice = 2100 J kg-1 K-1, specific heat capacity of water = 4186 J kg-1 K-1, latent heat of fusion of ice = 3.35 × 105 J kg-1 and latent heat of steam = 2.256 × 106 J kg-1.
Answer:
We have
Mass of the ice, m = 3 kg
Specific heat capacity of ice, sice
= 2100 J kg-1 K-1
Specific heat capacity of water, swater
= 4186 J kg-1 K-1
Latent heat of fusion ice, Lf ice
= 3.35 × 105 J kg-1
Latent heat of steam, Lsteam
= 2.256 × 106 J kg-1
Now,
Q = Heat required to convert 3 kg of ice at -12°C to steam at 100°C.
Q1 = Heat required to convert ice at – 12°C to ice at 0°C. .
msice ∆T1 = (3 kg) (2100 J kg-1 K-1) [0 – (-12)]°C = 75600 J
Q2 = Heat required to melt ice at – 0°C to water at 0°C.
mLf ice = (3 kg) (3.35 × 105 J kg-1) = 1005000 J
Q3 = Heat required to convert water at 0°C to water at 100°C.
msW ∆T2 = (3 kg) (4186 J kg-1 K-1) (100°C)
= 1255800 J
Q4 = Heat required to convert water at 100°C to steam at 100°C.
mLsteam = (3 kg) (2-256 × 106 J kg-1)
= 6768000 J
So,
Q = Q1 + Q2 + Q3 + Q4
= 75600 J + 1005000 J + 1255800 J + 6768000 J
= 9.1 × 106 J

Question 6.
What is the temperature of the steel- copper junction in the steady state of the system shown in fig. Length of the steel rod = 15.0 cm, length of the copper rod = 10.0 cm, temperature of the furnace = 300°C, temperature of the other end = 0°C. The area of cross section of the steel rod is twice that of the copper rod. (Thermal conductivity of steel = 50.2 J s-1m-1K-1 and of copper = 385 J s-1m-1K-1].
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 13
Answer:
Let T be the temperature of the steel-copper junction in the steady state. Then,
\(\frac{K_1 A_1(300-T)}{L_2}=\frac{K_2 A_2(T-0)}{L_2}\)
Where 1 and 2 refer to the steel and copper rod respectively. For A1 = 2, A2, L1 = 15.0 cm, L2 = 10.0 cm, K1 = 50.2 J s-1m-1K-1,
K2 = 385 J s-1m-1K-1, we have
\(\frac{50.2 \times 2(300-\mathrm{T})}{15}=\frac{385 \mathrm{~T}}{10}\)
which gives T = 44.4°C

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 7.
An iron bar (L1 = 0.1 m, A1 = 0.02 m2, K1 = 79 W m-1 K-1) and a brass bar (L2 = 0.1 m, A2 = 0.02 m2, K2 = 109 W m-1K-1) are soldered end to end as shown in fig. The free ends of the iron bar and brass bar are maintained at 373 K and 273 K respectively. Obtain expressions for and hence compute (i) the temperature of the junction of the two bars, (ii) the equivalent thermal conductivity of the compound bar and (iii) the heat current through the compound bar.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 14
Answer:
Given,
L1 = L2 = L = 0.1 m, A1 = A2 = A = 0.02 m2, K1 = 79 W m-1 K-1, K2 = 109 W m-1K-1, T1 = 373 K and T2 = 273 K.
Under steady state condition, the heat current (H1) through iron bar is equal to the heat current (H2) through brass bar.
So, H = H1 = H2
= \(\frac{K_1 A_1\left(T_1-T_0\right)}{L_1}=\frac{K_2 A_2\left(T_0-T_2\right)}{L_2}\)
For A1 = A2 = A and L1 = L2 = L this equation leads to
K1(T1 – T0) = K2(T0 – T2)
Thus the junction temperature T0 of the two bars is T0 = \(\frac{\left(K_1 T_1+K_2 T_2\right)}{\left(K_1+K_2\right)}\) ………….. (a)
Using this equation, the heat current H through either bar is
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 15
Using these equations, the heat current H’ through the compound bar of length L1 + L2 = 2L and the equivalent thermal conductivity K, of the compound bar are given by
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 16
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 17

AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter

Question 8.
A pan filled with hot food cools from 94°C to 86°C in 2 minutes when the room temperature is at 20°C. How long will it take to cool from 71°C to 69°C ?
Answer:
The average temperature of 94°C and 86°C is 90°C, which is 70°C above the room temperature. Under these conditions the pan cools 8°C in 2 minutes.
Using \(\frac{\mathrm{dT}_2}{\mathrm{~T}_2-\mathrm{T}_1}=-\frac{\mathrm{k}}{\mathrm{ms}}\) dt = – K dt we have
The average of 69°C and 71°C is 70°C, which is 50°C above room temperature. K is the same for this situation as for the original.
AP Inter 1st Year Physics Study Material Chapter 12 Thermal Properties of Matter 18
The average of 69°C and 71°C is 70°C, which is 50°C above room temperature. K is the same for this situation as for the original.
\(\frac{2^{\circ} \mathrm{C}}{\text { Time }}\) = K(50°C)
When we divide above two equations, we have
\(\frac{8^{\circ} \mathrm{C} / 2 \min }{2^{\circ} \mathrm{C} / \text { time }}=\frac{K\left(70^{\circ} \mathrm{C}\right)}{\mathrm{K}\left(50^{\circ} \mathrm{C}\right)}\)
Time = 0.7 min = 42 s

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Andhra Pradesh BIEAP AP Inter 1st Year Physics Study Material 11th Lesson Mechanical Properties of Fluids Textbook Questions and Answers.

AP Inter 1st Year Physics Study Material 11th Lesson Mechanical Properties of Fluids

Very Short Answer Questions

Question 1.
Define average pressure. Mention it’s unit and dimensional formula. Is it a scalar or a vector ? [A.P. Mar. 17]
Answer:
Average pressure (Pav) : Average power is defined as the normal force acting per unit area.
Pav = \(\frac{F}{A}\)
units → N/m2 (or) pascal
Dimensional formula → [ML-1 T-2]
Pressure is a scalar quantity.

Question 2.
Define Viscosity. What are it’s units and dimensions ?
Answer:
Viscosity : The property of a liquid which opposes the relative motion between its layers is called viscosity. .
G.G.S unit poise
S.I unit → Nm-2s
Dimensional formula = [M1L-1T-1]

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 3.
What is the principle behind the carburetor of an automobile ? [AP – Mar. 15; TS – Mar. ’18, ’17]
Answer:
The carburetor of automobile has a venturi channel (nozzle) through which air flows with a large speed. The pressure is then lowered at the narrow neck and the petrol is sucked up in the chamber to provide the correct mixture of air to fuel necessary for combustion. ”

Question 4.
What is magnus effect ? [T.S. Mar. 16; A.P. Mar. 15]
Answer:
The difference in the velocities of air results in the pressure difference between the lower and upper faces and there is a net upward force on the ball. This dynamic lift due to spinning is called magnus effect.

Question 5.
Why are drops and bubbles spherical ? [A.P. Mar. 18, 17, 16, 14]
Answer:
The surface tension of a liquid tends to have minimum surface area. For a given volume, the surface area is minimum for a sphere. Hence rain drops are spherical shape.

Question 6.
Give the expression for the excess pressure in a liquid drop. [T.S. Mar. 17]
Answer:
Excess pressure in a liquid drop, pi – p0 = \(\frac{2 s}{r}\)
where s = Surface tension; r = Radius of the liquid drop.

Question 7.
Give the expression for the excess pressure in an air bubble inside the liquid.
Answer:
Excess pressure in an air bubble inside the liquid, pi – p0 = \(\frac{2 s}{r}\)
where s = Surface tension
r = Radius of the air bubble.
Air bubble forms inside the liquid, hence it has one liquid surface.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 8.
Give the expression for the excess pressure soap bubble in air. [T.S. Mar. 16]
Answer:
Soap bubble have two interfaces, hence excess pressure inside a soap bubble is pi – p0 = \(\frac{4 s}{r}\)
where s = Surface tension
r = Radius of the soap bubble.

Question 9.
What are water proofing agents and water wetting agents ? What do they do ?
Answer:
Water proofing agents are added, to create a large angle of contact between water and fibres.
Soaps, detergents and dying substances are wetting agents. When they are added, the angle of contact becomes small. So that they may penetrate well and become effective.

Question 10.
What is angle of contact ? [A.P. Mar. 16]
Answer:
The angle between tangent to the liquid surface at the point of contact and solid surface inside the liquid is termed as angle of contact (0).

Question 11.
Mention any two examples that obey Bernoullis theorem and justify them. [A.P. Mar. 18]
Answer:

  1. In heavy winds house roof’s are blown off. When the velocity of the wind is greater on the roof top than inside the house, then the pressure on the roof top becomes less than that inside the house. This pressure difference causes the dynamic lift.
  2. When a fan is rotating, papers are blown off from .the table top. The velocity of wind on the paper increases due to fan and hence pressure decreases. Due to this pressure difference papers are blown off.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 12.
When water flows through a pipe, which of the layers moves fastest and slowest ?
Answer:
Water flows through a pipe, the layers near the axis of the tube are fastest and at the walls of the tube are slowest
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 1

Question 13.
“Terminal velocity is more if surface area of the body is more”. Give reasons in support of your answer.
Answer:
Surface area (A) = 4πr2 and terminal velocity (υt) αr2
As surface area increases, r2 is also increases. Then terminal velocity is also increases.
∴ Terminal velocity is more, if surface area of the body is more.

Short Answer Questions

Question 1.
What is atmospheric pressure and how is it determined using Barometer ?
Answer:
Atmospheric pressure : Atmospheric pressure at any point is equal to the weight of a column of air of unit cross sectional area extending from that point to the top of the earth’s atmosphere.
1 atm = 1.013 × 105 pa
Determination of atmospheric pressure using barometer: A long glass tube closed at one end and filled with mercury is inverted into a trough of mercury. This device is known as mercury barometer.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 2
The space above the mercury column in the tube contains only mercury vapour whose pressure Pis so small, that it may be neglected. The pressure inside the column at point A must equal the pressure at B.
∴ Pressure at B = Atmospheric pressure = Pa
Pa = ρgh = Pressure at A …………………… (1)
Where ρ is density of mercury and h is the height of the mercury column in the tube. In the experiment it is found that the mercury column in the barometer has a height of about 76cm at the sea level equivalent to one atmosphere.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 2.
What is guage pressure and how is a manometer used for measuring pressure differences ?
Answer:
Guage pressure : The guage pressure is the difference of the actual pressure and the atmospheric pressure. Pg = P – Pa
measurement of pressure differences :

  1. The manometer consists of a U-shaped tube, which is filled with a low density liquid (oil) for measuring small pressure difference and high density liquid
    (mercury) for measuring large pressure difference.
  2. One end of the tube is connected to the vessel D whose pressure of air measure and the other end of the tube is open.
  3. If pressure of air in vessel D is more than the earth’s atmosphere, the level of liquid in arm I will go down up to point A and level of liquid in arm II rises up to C.
  4. Then the pressure of air in vessel is equal to pressure at point A.
    AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 3
  5. Note the difference of liquid levels in the two arms of U-tube.(Say h). p be density of the liquid. Pa is the atmospheric pressure.
  6. Pressure at point A (PA) = Pressure at point B = Pressure at point C + Pressure due to column of liquid.
    PA = Pc + hρg (or) PA – Pc = hρg
    Here Pc = Pa, PA = P, ∴ P – Pa = hρg
    P – Pa = Pg = guage pressure = hρg

Question 3.
State Pascal’s law and verify it with the help of an experiment.
Answer:
Pascal’s law : It states that if gravity effect is neglected, the pressure at every point of liquid in equilibrium of rest is same.
Proof :

  1. Imagine a circular cylinder of uniform cross-sectional area A, such that points C and D lie on flat faces of the cylinder.
  2. The liquid inside the cylinder is in equilibrium under the action of forces exerted by the liquid outside the cylinder.
  3. These forces are acting every where perpendicular to the surface of the cylinder.
  4. Thus the forces on the flat faces of the cylinder at C and D will be perpendicular to the forces on the curved surface of the cylinder.
  5. Since liquid is in equilibrium, the sum of the forces acting on the curved surface of the cylinder must be zero.
    AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 4
  6. If P1 and P2 are the pressures at points C and D respectively. F1 and F2 are the forces acting on the flat surfaces of the cylinder due to liquid, then
    F1 = P1 A and F2 = P2A Since liquid is in equilibrium, therefore
    F1 = F2
    P1 A = P2A
    (or) P1 = P2
    It means the pressures at C and D are the same. This proves the pascal’s law.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 4.
Explain hydraulic lift and hydraulic brakes.
Answer:
Hydraulic lift and hydraulic brakes are based on the Pascal’s law.

Hydraulic lift : Here C and D are two cylinders of different areas of cross section. They are connected to each other with a pipe E. Each cylinder is provided with airtight frictionless piston. Let a, A be the area’s of cross-sections of the piston at C and D (a < < A)
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 5
The cylinders are filled with an incompressible liquid.
Let f be the applied force at C. Pressure exerted on the liquid
P = \(\frac{f}{a}\) ……………. (1)
According to pascal’s law, this pressure is transmitted to piston of cylinder D. Upward force at D will be
F = PA = \(\frac{f}{a}\) A = f \(\frac{A}{a}\) …………… (2)
As A > > a
∴ F > > f .
∴ Heavy load placed on the larger piston is easily lifted.

Hydraulic Brakes :
When the brake pedal is pressed, the piston (P) of the master cylinder is pushed inwards. There will be increased pressure on liquid at P, which is transmitted equally to P1 and P2 of wheel cylinder in accordance with pascal’s law. Due to which P1 and P2 move outwards. Breakshoes to move away from each other which in turn press against the inner rim of the wheel. The brake becomes operative.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 6

Question 5.
What is hydrostatic paradox ?
Answer:
Consider three vessels A, B and C of different shapes. They are connected at the bottom by a horizontal pipe. On filling with the level in the three vessels is the same, though they hold different amounts of water. This is so because water at the bottom has the same pressure below each section of the vessel. It means the liquid pressure at a point is independent of the quantity of liquid but depends upon the depth of point below the liquid surface. This is known as hydrostatic paradox.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 7

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 6.
Explain how pressure varies with depth.
Answer:
Consider a fluid at rest in a container. In figure point 1 is at a height h above a point 2. The pressure at points 1 and 2 are P1 and P2. As the fluid is at rest, the horizontal forces should be zero. The resultant vertical forces should balance the weight of the element. Pressure at top (P1A) acting downward, pressure at bottom (P2A) acting upward.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 8
(P2 – P1) A = mg ………………… (1)
Mass of the fluid (m) = ρv = ρhA
(P2 – P1) = ρgh ………………. (2)
Pressure difference depends on the vertical distance h.
If the point 1 under discussion is shifted to the top of the fluid (water), which is open to the atmosphere, P1 may be replaced by atmospheric pressure (Pa) and P2 by P. Then eq (2) gives
P – Pa = ρgh
P = Pa + ρgh ……………… (3)
Thus the pressure P, at depth below the surface of a liquid open to the atmosphere is greater than atmospheric pressure by an amount ρgh.

Question 7.
What is Torricelli’s law ? Explain how the speed of efflux is determined with an experiment.
Answer:
Torricelli’s theorem : The velocity of efflux i.e., the velocity with which the liquid flows out of an orifice (i.e., a narrow hole) is equal to that which is freely falling body would acquire in falling through a vertical distance equal to the depth of orifice below the free surface of liquid.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 9
Consider ideal liquid of density p contained in a tank provided with a narrow hole.
Let h = Height of free surface of liquid above O.
P = Atmospheric pressure
v = Velocity of efflux
Applying Bernoulli’s theorem at A and O
(P + ρgh + O)atA = [P + 0 + \(\frac{1}{2}\)ρv2]atO
P + ρgh = P + \(\frac{1}{2}\) ρv2 = ρgh = \(\frac{1}{2}\)ρv2
v = \(\sqrt{2 g h}\)

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 8.
What is Venturi-meter? Explain how it is used.
Answer:
Venturi meter: The Venturi-meter is a device to measure the flow speed of incompressible fluid.

  1. It consists of a tube with a broad diameter and a small constriction at the middle.
  2. A manometer in the form of a U-tube is also attached to it, with one of arm at the broad neck point of the tube and the other at constriction as shown in figure.
    AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 10
  3. The manometer contains a liquid of density ρm.
  4. The pressure difference causes the fluid in the U-tube connected at the narrow neck to rise in comparison to the other arm.
  5. Filter pumps, sprayers used for perfumes, carburetor of automobile has used on this principle.

Question 9.
What is Reynolds number ? What is it’s significance ?
Answer:
Reynolds number : “Reynold number is a pure number which determines the nature of flow of liquid through a pipe”.
Reynold number (Re) = \(\frac{\rho \mathrm{vd}}{\eta}\)
Where ρ is density of the fluid
v is speed of the fluid
d is diameter of the pipe

  1. If the flow is stream line (or) laminor Re < 1000
  2. If the flow is turbulent, Re > 2000
  3. If the flow becomes unsteady, 1000 < Re < 2000

Physical significance of Reynolds number : Reynold’s number describes the ratio of the inertial force per unit area to the viscous force per unit area for a flowing fluid.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 11

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 10.
Explain dynamic lift with examples.
Answer:
Dynamic lift: Dynamic lift is the force that act on a body, by virtue of its motion through a fluid.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 12
e.g.1 : Fig (a) shows, ball moving without spin. Stream lines are equally distributed above and below the ball. The velocity above and below the ball is same resulting zero pressure difference. There no upward (or) downward force on the ball.

Fig (b) shows, ball moving with spin stream lines are more crowded above the ball than below. The velocity of air above the ball is large (v + vr) and below it is smaller (v – vr). As a result, there is a pressure difference between lower and upper faces. Pressure is less at top of the ball and pressure is morebelow the ball. There is a net upward force on the ball.
e.g. 2 : Dynamic lift also acts on the an aeroplane wing.

Question 11.
Explain Surface Tension and Surface energy. [Mar. 13]
Answer:
Surface tension (S): The force acting per unit length of an imaginary line drawn on the surface of a liquid, normal to it and parallel to the surface is called surface tension.
T = \(\frac{\mathrm{F}}{l}\)
S.l unit → N/m
D.F → [MT-2]
Surface energy (E): The additional potential energy due to molecular forces per unit surface area is called surface tension.
Surface energy = \(\)
S.l Unit → J/m2
D.F → (MT-2 )
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 13
Consider a horizontal liquid film ending in bar free to slide over parallel guides. We move the bar by a small distance d. The area of the surface increases, the system now has more energy, this means – that some work has to be done against an internal force F.
Work done (W) = F.d
If the surface energy of the film is S per unit area, the extra area is 2dl. A film has two sides and the liquid in between them.
So there are two surfaces and the extra energy is
S (2dl) = Fd
S = \(\frac{\mathrm{F}}{2 l}\)
Surface tension is equal to the surface energy and is also equal to the force per unit length exerted by the fluid on the movable bar.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 12.
Explain how surface tension can be measured experimentally.
Answer:
A flat vertical glass plate, below which a vessel of some liquid is kept, forms one arm of the balance. The plate is balanced by weights on the otherside, with its horizontal edge just over water. The vessel is raised slightly till the liquid just touches the glass plate and pulls it down a little because of surface tension. Weights are added till the plate just clears water. Suppose the additional weight requires is W.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 14
Surface tension of liquid air interface is
Sla = \(\frac{\mathrm{W}}{2 l}=\frac{\mathrm{mg}}{2 l}\)
Where l is length of the plate edge, m is extra mass.

Long Answer Questions

Question 1.
State Bernoulli’s principle. From conservation of energy in a fluid flow through a tube, arrive at Bernoulli’s equation. Give an application of Bernoulli’s theorem.
Answer:
Bernoulli’s principle : Bernoulli principle states that in a stream line flow, the sum of the pressure, the K.E per unit volume and the P.E per unit volume remains a constant.
P + \(\frac{1}{2}\) ρv2 + ρgh = constant

  1. Consider a non-viscous, incompressible fluid is flowing through the pipe in a steady flow.
  2. Consider the flow at two regions BC and DE. Initially the fluid lying between B and D.
    AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 15
  3. During short time interval At, this fluid would have moved. Suppose V1 is the speed at B and V2 is the speed at D.
  4. In time ∆t, distance moved from B to C is V1 ∆t in the same interval (∆t) distance moved from D to E is V2∆t.
  5. Let P1 and P2 be pressure act at area’s of cross¬sections A1 and A2 of the two regions.
  6. The work done on the fluid at left end (BC)
    = Force × displacement
    = Pressure × Area × displacement
    = P1A1 × V1∆t (∆V = A1V1∆t) = P1∆V ………………. (1)
  7. Similarly work done by the fluid at right end (DE)
    = P2A2 × V2∆t = P2∆V …………………. (2)
  8. Work done on the fluid is taken as positive and workdone by the fluid is taken as negative.
    ∴ Total work done (W) = (P1 – P1) ∆V ………………. (3)
    Part of this work goes into changing the K.E of the fluid and part goes into changing gravitational P.E.
  9. Mass of the fluid(∆m) passing through the pipe in time (∆t) is ∆m = ρA1V1∆t
    where ρ is the density of the fluid.
    ∆m = ρ∆V ………………….. (4)
  10. Gravitational P.E = ρg∆V (h2 – h1) ………………… (5)
    Change in K.E (∆K) = \(\frac{1}{2}\) ρ∆V (V22 – V12) …………….. (6)
  11. According to law of conservation of energy
    (P1 – P2) ∆V = \(\frac{1}{2}\) ρ ∆V (V22 – V12) + ρg∆V (h2 – h1)
    P1 – P2 = \(\frac{1}{2}\) ρ (V22 – V12) + ρg (h2 – h1)
    P1 + \(\frac{1}{2}\) ρ V12 + ρgh1 = P1 + \(\frac{1}{2}\) ρ V22 + ρgh2
    P + \(\frac{1}{2}\) ρ v2 + ρgh = constant ………………. (7)

∴ Sum of the pressure, K.E per unit volume and P.E per unit volume remains constant. Application of Bernoulli’s theorem :

  1. It explains the dynamic lift on the wings of aeroplanes.
  2. It explains the dynamic lift experienced by a spinning cricket ball.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 2.
Define coefficient of viscosity. Explain Stoke’s law and explain the conditions under which a rain drop attains terminal velocity, υt. Give the expression for υt.
Answer:
Coefficient of viscosity (η): The coefficient of viscosity is defined as the tangential force per unit area of the layer, required to maintain unit velocity gradient.
η = \(\frac{F}{A\left(\frac{\Delta V}{\Delta x}\right)}\)
S.l. unit → Nm-2 s (or) PaS
C.G.S unit → Poise
Dimensional formula = [ML-1T-1]
Stoke’s law : According to this law the viscous force acting on a moving body which is spherical in shape is directly proportional to

  1. Coefficient of viscosity of fluid (η)
  2. Radius of the spherical body (r)
  3. Velocity of the body (v)

∴ F ∝ ηrv
F = Kηrv
Where K is a constant of proportionality. Experimentally it was found to be 6π.
∴ F = 6πηrv
When rain drops falling through air from the clouds reach the surface with almost constant speed through they are moving under gravitational force. This velocity is called terminal velocity. After attaining the terminal velocity, net force acting on the rain drop is zero.
According to stokes law, F ∝ ηrv
F = 6πηrv (∵ 6π = K = Proportionality constant)
Let ρ, r be the density and radius of the sphere.
The fluid density be σ.
The forces acting on the sphere are

  1. Weight of the sphere W = mg
    W = Vρg = \(\frac{4}{3}\)πr3ρg …………….. (1)
  2. The force of buoyancy (B) = V σ g = \(\frac{4}{3}\)πr3σg ……………. (2)
  3. Viscous force (f) = 6πηv ………………… (3)
    When the sphere attains terminal velocity (vt), the net force on the body becomes zero.
    AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 16
    ∴ At terminal velocity
    Net downward force = Net upward force
    W = B + f, W – B = f
    \(\frac{4}{3}\)πr3ρg – \(\frac{4}{3}\)πr3σg = 6πηrvt;
    ∴ \(\frac{4}{3}\)πr3g (ρ – σ) = 6πηrvt
    Vt = \(\frac{2}{9} \frac{r^2 g(\rho-\sigma)}{\eta}\) ………………. (4)

Problems

Question 1.
Calculate the work done in blowing a soap bubble of diameter 0.6 cm against the surface tension force. (Surface tension of soap solution = 2.5 × 102 Nm-1).
Solution:
D = 0.6 cm = 0.6 × 102 m
r = \(\frac{D}{2}=\frac{0.6 \times 10^{-2}}{2}\) = 0.3 × 102 m
S = 2.5 × 102 N/m
W = 8πr2s
= 8 × 3.14 × (0.3 × 10-2)2 × 2.5 × 10-2
W = 5.652 × 10-6 J

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 2.
How high does methyl alcohol rise in a glass tube of diameter 0.06 cm ? (Surface tension of methyl alcohol = 0.023 Nm-1 and density = 0.8 gmcm-3. Assume that the angle of contact is zero)
Solution:
D = 0.06cm, θ = 0°
r = \(\frac{D}{2}=\frac{0.06}{2}\) = 0.03 cm = 0.03 × 10-2 m
= 3 × 10-4 m
S = 0.023 N/m, Density = 0.8 gm/c.c.
= 0.8 × \(\frac{10^{-3}}{10^{-6}}\)
ρ = 0.8 × 103 kg/m3
S = \(\frac{\mathrm{hr \rho g}}{2 \cos \theta}\)
h = \(\frac{2 \cos \theta}{r \rho g}\)
= \(\frac{2 \times 0.023}{3 \times 10^{-4} \times 0.8 \times 10^3 \times 9.8}\) (∵ cos 0° = 1)
= 0.0019 × 10-1 m
≈ 0.002 m
h = 2 cm .

Question 3.
What should be the radius of a capillay tube if water has to rise to a height pf 6 cm in it ? (Surface tension of water = 7.2 × 10-2 Nm-1).
Solution:
h = 6 × 10-2 m
S = 7.2 × 10-2 N/m
Density of water (ρ) = 103 kg/m3
S = \(\frac{\mathrm{hr \rho g}}{2}\)
r = \(\frac{2 \mathrm{~S}}{\mathrm{h \rho g}}=\frac{2 \times 7.2 \times 10^{-3}}{6 \times 10^{-2} \times 10^3 \times 9.8}\)
r = \(\frac{14.4}{58.8} \) × 10-3
r = 0.24 × 10-3 m
r = 0.24 mm

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 4.
Find the depression of the meniscus in the capillary tube of diameter 0.4 mm dipped in a beaker containing , mercury. (Density of mercury = 13.6 × 103 Kg m-3 and surface tension of mercury = 0.49 Nm-1 and angle of contact = 135°).
Solution:
D = 4 m.m
r = \(\frac{D}{2}=\frac{4}{2}\) = 2m.m = 2 × 10-3 m
ρ = 13.6 × 103 kg/m3
θ = 135°, S = 0.49 Nm
cosθ = cos 135°
= – sin 45° = – \(\frac{1}{\sqrt{2}}\)
S = \(\frac{\mathrm{hr \rho g}}{2 \cos \theta}\)
h = \(\frac{2 \mathrm{~s} \cos \theta}{\mathrm{r \rho g}}\)
= 2 × 0.49 \(\left(\frac{-1}{\sqrt{2}}\right) \frac{1}{2 \times 10^{-3} \times 13.6 \times 10^3 \times 9.8}\)
h = \(\frac{-0.49}{13.6 \times 9.8 \times \sqrt{2}}\)
h = -0.024m.

Question 5.
If the diameter of a soap bubble is 10 mm and its surface tension is 0.04 Nm-1, find the excess pressure inside the bubble. [Mar. 14]
Solution:
D = 10 m.m
r = \(\frac{D}{2}=\frac{10}{2}\) = 5 m.m
= 5 × 10-3
S = 0.04 N/m
Pi – P0 = \(\frac{4 S}{r}=\frac{4 \times 0.04}{5 \times 10^{-3}}\)
= 0.032 × 103
Pi – P0 = 32 N/m2 (or) Pascal.

Question 6.
If work done by an agent to form a bubble of radius R is W, then how much energy is required to increase its radius to 2R ?
Solution:
R1 = R, R2 = 2R
Initial work done (W) = 8πR2S
Final work done (W) = 8π[R22 – R12]S
= 8π [4R2 – R2]S
= 3 × 8π R2S
W = 3W.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 7.
If two soap bubbles of radii R1 and R2 (in vacuum) coalasce under isothermal conditions, what is the radius of the new bubble. Take T as the surface tension of soap solution.
Solution:
R1, R2 and R be the radii of first, second and resultant bubble. The soap bubbles coalesce in vacuum, so surface energy do not change
E = E1 + E2
8π R2T = 8π R12T + 8π R22 T
R2 = R12 + R22
R = \(\sqrt{R_1^2+R_2^2}\)

Additional Problems

Question 1.
Explain why
a) The blood pressure in humans is greater at the feet than at the brain.
b) Atmospheric pressure at a height of about 6 km decreases to nearly half of its value at the sea level, though the height of the atmosphere is more than 100 km.
c) Hydrostatic pressure is a scalar quantities even though pressure is force divided by area.
Answer:
a) The height of the blood column in the human body is more at feet than at the brain. That is why, the blood exerts more pressure at the feet than at the brain (∴ pressure = hρg)

b) We know that the density of air is maximum near the surface of earth and decreases rapidly with height and at a height of about 6 km, it decreases to near by half its value at the sea level. Beyond 6 km height the density of air decreases very slowly with height. Due to this reason, the atmospheric pressure at a height of about 6 km decreases to nearby half of its value at sea level.

c) Since due to applied force on liquid, the pressure is transmitted equally in all directions inside the liquid. That is why there is no fixed direction for the pressure due to liquid. Hence hydrostatic pressure is a scalar quantity.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 2.
Explain why
a) The angle of contact of mercurywith glass is obtuse, while that of water with glass is acute.
b) Water on a clean glass surface tends to spread out while mercury on the same surface tends to form drops. (Put differently, water wets glass while mercury does not.) [T.S. Mar. 15]
c) Surface tension of a liquid is independent of the area of the surface.
d) Water with detergent disolved in it should have small angles of contact.
e) A drop of liquid under no external forces is always spherical in shape.
Answer:
a) When a small quantity of liquid is poured on solid, three interfaces, namely liquid- air, solid-air and solid-liquid are formed. The surface tensions corresponding to these three interfaces are SLA, SSA and SSL respectively. Let 0 be the angle of contact between the liquid and solid. The molecules in the region, where the three interfaces meet are in equilibrium. It means net force acting on them is zero. For the molecule at 0 to be in equilibrium, we have.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 17
In case of mercury glass, SSA < SSL, therefore cosθ is negative or θ > 90° i.e. obtuse. In case of water-glass, SSA > SSL, therefore cosθ is positive or θ < 90° i,e. acute.

b) For mercury glass, angle of contact is obtuse. In order to achieve this obtuse value of angle of contact, the mercury tends to form a drop. In case of water glass, the angle of contact is acute. To achieve this acute value of angle of contact, the water tends to spread.

c) Surface tension of liquid is the force acting per unit length on a line drawn tangentially to the liquid surface at rest. Since this force is independent of the area of liquid surface, therefore surface tension is also independent of the area of the liquid surface.

d) We know that the cloth has narrow spaces in the form of capillaries. The rise of liquid in a capillary tude is directly proportional to cos0. if 0 is small cos0 will be large. Due to which capillary rise will be more and so the detergent will penetrate more in cloth.

e) In the absence of external forces, the surface of the liquid drop tends to acquire the minimum surface area due to surface tension. Since for a given volume, the surface area of sphere is least, hence the liquid drop takes the spherical shape.

Question 3.
Fill in the blanks using the word (S) from the list appended with each statement ;
a) Surface tension of liquids generally … with temperatures (increases / decreases)
b) Viscosity of gases… with temperature, whereas viscosity of liquids … with temperature (increases / decreases)
c) For solids with elastic modulus of rigidity, the shearing force is proportional to…. while for fluids it is proportional to … (shear strain / rate of shear strain)
d) For a fluid in a steady flow, the increase in flow speed at a constriction follows (conservation of mass / Bernoulli’s principle)
e) For the model of a plane in a wind tunnel, turbulence occurs at a… speed for turbulence for an actual plane (greater / smaller)
Answer:
a) Decreases
b) increases; decreases
c) Shear strain; rate of shear strain.
d) Conservation of mass; Bernoullis principle.
e) Greater.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 4.
Explain why
a) To keep a piece of paper horizontal, you should blow over, not under, it.
b) When we try to close a water tap with our fingers, fast jets of water gush through the openings between our fingers.
c) The size of the needle of a syringe controls flow rate better than the thumb pressure exerted by a doctor while administering an injection.
d) A fluid flowing out of a small hole in a vessel results in a backward thrust on the vessel.
e) A spinning cricket ball in air does not follow a parabolic trajectory.
Answer:
a) When we blow over the paper, the velocity of air blow increases and hence pressure of air on it decreases (according to Bernoullis theorem), whereas pressure of air below the paper is atmosphere. Hence the paper stays horizontal.

b) By doing so the area of the outlet of water jet is reduced, so velocity of water increases according to equation of continuity av = a constant.

c) When a fluid is flowing out of a small hole in a vessel it acquires a large velocity and hence possesses large momentum. Since no external force is acting on the system, a backward velocity must be attained by the vessel (according to law of conservation of momentum). As a result of it, impulse (backward thrust) is experienced by the vessel.

d) There, size of the needle controls velocity of flow and thumb pressure controls pressure. According to Bernoulli’s theorem, P + ρgh + \(\frac{1}{2}\) ρV2 = a constant shows that P occurs with power one and V occurs with power two, hence the velocity has more influence. That is why the needle has a better control over flow.

e) If the ball is spinning well as moving linearly, the streamlines at the top of ball due to two types of motion are opposed to each other and those below are in the same direction. As a result of it, the velocity of air flow is greater below than above the ball. Now, according to Bernoullis principle, the pressure on the upper side of the ball becomes more than the pressure on the lower side of ball. Due to it, a resultant force F acts upon the ball at right angle to linear motion in the downward, direction, resulting the ball to move along a curved path.

Question 5.
A 50 kg girl wearing high heel shoes balances on a single heel. The heel is circular with a diameter 1.0 cm. What is the pressure exerted by the heel on the horizontal floor ?
Answer:
Here, m = 50kg; r =D/2 = 1/2 cm = \(\frac{1}{200}\) m
Pressure = \(\frac{\text { Force }}{\text { area }}=\frac{m g}{\pi r^2}=\frac{50 \times 9.8}{(22 / 7)(1 / 200)^2}\)
= 6.24 × 106 Nm-2.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 6.
Toricelli’s barometer used mercury. Pascal duplicated it using French wine of density 984 kg m-3. Determine the height of the wine column for normal atmosphere pressure.
Answer:
P = 0.76 × (13.6 × 103) × 9.8
= h × 984 × 9.8 or
h = \(\frac{0.76 \times 13.6 \times 10^3 \times 9.8}{984 \times 9.8}\)
= 10.5 m.

Question 7.
A vertical off-shore structure is built to withstand a maximum stress of 109 Pa. Is the structure suitable for putting up on top of an oil well in the ocean ? Take the depth of the ocean to be roughly 3 km and ignore ocean currents.
Answer:
Here, maximum stress = 109Pa,
h = 3km = 3 × 103m;
ρ(water) = 103kg/m3 and g = 9.8 m/s2
The structure will be suitable for putting upon top of an oil well provided the pressure exerted by sea water is less than the maximum stress it can bear.
Pressure due to sea water, P = hρg
= 3 × 103 × 103 × 9.8
= 2.94 × 107 Pa
Since the pressure of sea water is less than the maximum stress of 109 Pa, the structure will be suitable for putting upon top of the oil well.

Question 8.
A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000 kg. The area of cross-section of the piston carrying the load is 425 cm2. What maximum pressure would the smaller piston have to bear ?
Answer:
The maximum force, which the bigger piston can bear,
F = 3000 kgf = 3000 × 9.8 N
∴ Area of piston, A = 425 cm2
= 425 × 10-4 m2
∴ maximum pressure on the bigger piston.
P = \(\frac{F}{A}=\frac{3000 \times 9.8}{425 \times 10^{-4}}\) = 6.92 × 105 Pa
Since the liquid transmits pressure equally, therefore the maximum pressure the smaller piston can bear is 6.92 × 105 Pa.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 9.
A U-tube contains water and methylated spirit separated by mercury. The mercury columns in the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other. What is the specific gravity of spirit ?
Answer:
For water column in one arm of U-tube,
h1 = 10.0 cm; ρ1 (density) = 1g cm-3
For spirit column in other arm of U-tube, h2 = 12.5 cm; ρ1 = ?
As the mercury column in the two arms of U-tube are in level, therefore pressure exerted by each is equal. Hence h1ρ1g = h2ρ2g or
P2 = \(\frac{h_1 \rho_1}{h_2}=\frac{10 \times 1}{12.5}\) = 0.8 g cm-3
Therefore, relative density of spirit = ρ21
= \(\frac{0.8}{1}\) = 0.8

Question 10.
In the previous problem, if 15.0 cm of water and spirit each are further poured into the respective arms of the tube, what is the difference in the levels of mercury in the two arms ? (Specific, gravity of mercury = 13.6)
Answer:
On pouring 15.0 cm of water and spirit each into the respective arms of U-tube, the mercury level will rise in the arm containing spirit. Let h be the difference in the levels of mercury in two arms of U-tube and p be the density of mercury.
∴ The pressure exerted by h cm of mercury column = difference in pressure exerted by water and spirit.
∴ h1ρ1g = h2ρ2g ……………. (1)
Here h = ? ρ =13.6 g cm-3
ρ1 =1 cm-3
ρ2 = 0.8 g cm-3
h1 = 15 + 10 = 25 cm
h2 = 15 + 12.5 = 27.5 cm
Putting values in (i) we get h × 13.6 × g
= 25 × 1 × g – 27.5 × 0.8 × g = 3g
or h = 3/13.6 = 0.22cm

Question 11.
Can Bernoulli’s equation be used to describe the flow of water through a rapid in a river ? Explain.
Answer:
No, Bernoulli’s theorem is used only for stream – line flow.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 12.
Does it matter if one uses gauge instead of absolute pressures in applying Bernoulli’s equation ? Explain.
Answer:
No, it does not matter if one uses gauge instead of absolute pressures in applying Bernoulli’s’ equation, provided the atmospheric pressure at the two points where Bernoulli’s equation is applied are significantly different.

Question 13.
Glycerine flows steadily through a horizontal tube of length 1.5 m and radius 1.0 cm. If the amount of glycerine collected per second at one end is 4.0 × 10-3 kg s-1, what is the pressure difference between the two ends of the tube ? (Density of glycerine = 1.3 × 103 kg m-3 and viscosity of glycerine = 0.83 Pa s). [You may also like to check if the assumption of laminar flow in the tube is correct].
Answer:
Here, l = 1.5 m, r = 1.0 cm = 10-2 m, ρ = 1; 1.3 × 10-3 kg/m3; η = 0.83 Nsm-2.
Mass of glycerine flouring per sec, M = 4 × 10-3 kg/s
Volume of glycerine flouring per sec, V = \(\frac{M}{\rho}\)
V = \(\frac{4 \times 10^{-3}}{1.3 \times 10^3} \mathrm{~m}^3 \mathrm{~s}^{-1}\) m3s-1
If ρ is the difference of pressure between two ends of the tube,then using poisevilles formula we have
V = \(\frac{\pi \rho r^4}{8 \eta l}\) or P = \(\frac{V \times 8 \eta l}{\pi r^4}\)
P = \(\left(\frac{4 \times 10^{-3}}{1.3 \times 10^3}\right) \times \frac{8 \times 0.83 \times 1.5}{3.142 \times\left(10^{-2}\right)^4}\)
= 975.37 Pa

Question 14.
In a test experiment on a model aeroplane in a wind tunnel, the flow speeds on the upper and lower surfaces of the wing are 70 m s-1 and 63 m s-1 respectively. What is the lift on the wing if its area is 2.5 m2 ? Take the density of air to be 1.3 kg m-3.
Answer:
Let V1, V2 be the speeds on the upper and lower surfaces of the wing of aeroplane and P1 and P2 be the pressures on upper and lower surfaces of the wing respectively.
Then V1 = 70ms-1; V2 = 63ms-1,
P = 1.3kg m-3.
This difference of pressure provides the lift to the aeroplane.
\(\frac{P_1}{\rho}\) + gh + \(\frac{1}{2} V_1^2\) = \(\frac{P_2}{\rho}\) + gh + \(\frac{1}{2} V_2^2\)
∴ \(\frac{P_1}{\rho}-\frac{P_2}{\rho}=\frac{1}{2}\left(V_2^2-V_1^2\right)\)
or P1 – P2 = \(\frac{1}{2} \rho\left(V_2^2-V_1^2\right)\)
= \(\frac{1}{2}\) × 1.3 [(70)2 – (63)2]
= 605.15 Pa
This difference of pressure provides the lift to the aeroplane.
So, lift on the aeroplane = Pressure difference × area of wings
= 605.15 × 2.5
= 1512.875 N
= 1.51 × 103N.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 15.
Figures (a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 18
Answer:
Figure a is incorrect. According to equation of continuity i.e. av = a constant, where area of cross – section of tube is less, the velocity of liquid flow is more than the other portion of tube. According to Bernoulli’s theorem,
P + \(\frac{1}{2}\) ρv2 = a constant i.e. where V is more P is less and avice versa.

Question 16.
The cylindrical tube of a spray pump has a cross-section of 8.0 cm2 one end of which has 40 fine holes each of diameter 1.0 mm. If the liquid flow inside the tube is 1.5 m min-1, what is the speed of ejection of the liquid through the holes ?
Answer:
Area of cross – section of tube, a1 = 8.0 cm2 = 8 × 10-4 m2
No. of holes = 40, Diameter of each hole, D = 1 mm = 10-3 m
∴ Radius of hole, r = \(\frac{D}{2}=\frac{1}{2}\) × 10-3 m
= 5 × 10-4 m
Area of cross – section of each hole = πr2
= π(5 × 10-4)2m2
Total area of cross – section of 40 holes,
a2 = 40 × π (5 × 10-4)2m2
Speed of liquid inside the tube,
V1 = 1.5m/min
= \(\frac{1.5}{60}\) ms-1
If V2 is the velocity of ejection of the liquid through the holes, then
a1V1 = a2V2 or V2 = \(\frac{a_1 V_1}{a_2}\)
V2 = \(\frac{\left(8 \times 10^{-4}\right) \times 1.5}{60 \times 40 \times \pi \times\left(5 \times 10^4\right)^2}\)
= 0.637 ms-1

Question 17.
A U-shaped wire is dipped in a soap solution and removed. The thin shaped film formed between the surfaces and the light slider supports a weight of 1.5 × 10-2 N (which includes the small weight of the slider). The length of the slider is 30 cm. What is the surface tension of the film ?
Answer:
We know that soap film has two free surfaces, so total length of the film to be supported,
= 2l = 2 × 30 = 60 cm
= 0.6 m
Total force on the slider due to surface tension will be,
F = S × 2l
= S × 0.6 N
In equilibrium position, the force F on slider due to surface tension must balance the weight mg
(1.5 × 10-2)N i.e. F = 1.5 × 10-2
= S × 0.6 Or
S = \(\frac{1.5 \times 10^{-2}}{0.6}\)
2.5 × 10-2Nm-1

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 18.
Figure (a) shows a thin liquid film supporting a small weight = 4.5 × 10-2 N. What is the weight supported by a film of the same liquid at the same temperature in Fig. (b) and (c) ? Explain your answer physically.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 19
Answer:
a) Here, length of film supporting the weight
= 40cm = 0.4 m
Total liquid film supported (or force)
= 4.5 × 10-2 N
film has two free surfaces, ∴ surface tension,
S = \(\frac{4.5 \times 10^{-2}}{2 \times 0.4}\)
S = 5.625 × 10-2 Nm-1
Since the liquid is same for all the cases (a), (b), (c) and temperature is also same, therefore surface tension for cases (b) and (c) will also be the same = 5.625 × 10-2. In figure (b) and (c) the length of the film supporting the weight is also the same as that of(a), hence the total weight supported in each case is 4.5 × 10-2 N.

Question 19.
What is the pressure inside the drop of mercury of radius 3.00 mm at room temperature ? Surface tension of mercury at that temperature (20°C) is 4.65 × 10-1 Nm-1. The atmospheric pressure is 1.01 × 105 Pa. Also give the excess pressure inside the drop.
Answer:
Here, r = 3.0 mm = 3 × 10-3 m;
S = 4.65 × 10-1 Nm-1;
P = 1.01 × 105 Pa
Excess of pressure inside the drop of mercury is given by
P = \(\frac{2 S}{r}=\frac{2 \times 4.65 \times 10^{-1}}{3 \times 10^{-3}}\)
= 310 Pa
Total pressure inside the drop = P + ρ
= 1.01 × 105 + 310
= 1.01 31 × 105 Pa

Question 20.
What is the excess pressure inside a bubble of soap solution of radius 5.0 mm, given that the surface tension of soap solution at the temperature (20°C) is 2.50 × 10-2 Nm-1? If an air bubble of the same dimension were formed at depth of 40.0 cm inside a container containing the soap solution (of relative density 1.20), what would be the pressure inside the bubble ? (1 atmospheric pressure is 1.01 × 105 Pa).
Answer:
Here, S = 2.5 × 10-2 Nm-1, r = 5.00 mm = 5 × 10-3 m.
Density of soap solution, ρ = 1.2 × 103 kg m-3
Excess pressure inside the soap bubble,
P = \(\frac{4 s}{r}=\frac{4 \times 2.5 \times 10^{-2}}{5 \times 10^{-3}}\) = 20 Pa
Excess pressure inside the air bubble, P’ = \(\frac{2S}{r}\)
= \(\frac{2 \times 2.5 \times 10^{-2}}{5 \times 10^{-3}}\) = 10 Pa
Total pressure inside the air bubble at depth h in soap solution – ρ’ + atmospheric pressure + hρg
= 10 + 1.01 × 105 + 0.4 × 1.2 × 103 × 9.8
= 1.06 × 103 Pa

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 21.
A tank with a square base of area 1.0 m2 is divided by a vertical partition in the middle. The bottom of the partition has a small-hinged door of area 20 cm2. The tank is filled with water in one compartment and an acid (of relative density 1.7) in the other, both to a height of 4.0 m. compute the force necessary to keep the door close.
Answer:
For compartment containing water,
h1 = 4m, ρ1 = 103 kg m-3
The pressure exerted by water at the door provided at bottom
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 20
P1 = h1ρ1g
= 4 × 103 × 9.8
= 3.92 × 104 Pa
For compartment containing acid,
h2 = 4m,
ρ2 = 1.7 × 1.03 kg/m3
The pressure exerted by acid at the door provided at bottom.
P2 = h2ρ2g
= 4 × 1.7 × 103 × 9.8
= 6.664 × 104 Pa
∴ Difference of pressure = P2P1
= 6.664 × 104 – 3.92 × 104
= 2.774 × 104Pa
Given, area of door, A = 20cm2
= 20 × 10-4m2
Force on the door = difference in pressure × area
= (P2 – P1) × A
= (2.774 × 104) × (20 × 104)
= 54.88N
≈ 55N
To keep the door closed, the force equal to 55 N should be applied horizontally on the door from compartment containing water to that containing acid.

Question 22.
A manometer reads the pressure of a gas in an enclosure as shown in Fig. (a) when a pump removes some of the gas, the manometer reads as in Fig. (b) The liquid used in the manometers is mercury and the atmo-spheric pressure is 76 cm of mercury.
a) Give the absolute and gauge pressure of the gas in the enclosure for cases (a) and b) in units of cm of mercury.
b) How would the levels change in case (b) if 13.6 cm of water (immiscible with mercury, are poured into the right limb of the manometer? (Ignore the small change in the volume of the gas).
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 21
Answer:
a) Here, atomospheric presure, p = 76 cm of mercury
In Fig (a) Pressure head
h = + 20 cm
∴ Absolute pressure = p + h
= 76 + 20
= 96 cm of mercury
Gauge pressure = h = 20 cm of mercury.
In fig (b) pressure head, h = -18 cm
Absolute pressure = p + h
= 76+ (-18)
= 58 cm of mercury
Gauge pressure = h = -18cm of mercury.

b) Here 13.6 cm of water added in right limb is equiralent to
\(\frac{13.6}{13.6}\) = 1 cm of mercury column.
i.e., h1 = 1 cm of mercury column.
Now pressure at A, PA = P + h1 = 76 + 1
= 77 cm
Let the difference in mercury levels in the two lumbs be h1, then pressure at B,
PB = 58 + h1 or
As PA = PB = 77 = 58 + h1
h1 = 77 – 58 = 19 cm of mercury column.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 23.
Two vessels have the same base area but different shapes. The first vessel takes twice the volume of water that the second vessel requires to fill upto a particular comon height. Is the force exerted by the water on the base of the vessel the same in the two cases ? If so, why do the vessels filled with water to that same height give different readings on a weighing scale ?
Answer:
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 22
Since the pressure depends upon the height of water column and the height of the water column in the two vessels of different shapes is the same.hence there will be same pressure due to water on the base of each vessel. As the base area of each vessel is same, hence there will be equal force acting on the two base areas due to water pressure. The water exerts force on the walls of the vessel also. In case, the walls of the vessel are not perpendicular to base, the force exerted by water on the walls has a net non-zero vertical component which is more in first vessel than that of second vessel. That is why, the two vessel:; filled with water to same vertical height show different readings on a weighing machine.

Question 24.
During blood transfusion the needle is inserted in a vein where the gauge pressure is 2000 Pa. At what height must the blood container be placed so that blood may just enter the vein ? Use the density of whole blood from Table 1.
Answer:
h = \(\frac{p}{p g}=\frac{200}{1.06 \times 10^3}\) × 9.8 = 0.1925 m
The blood may just enter the vein if the height at which the blood container be kept must be slightly greater than 0.1925 m i.e. 0.2 m.

Question 25.
In deriving Bernoulli’s equation, we equated the work done on the fluid in the tube to its change in the potential and kinetic energy.
a) What is the largest average velocity of blood flow in an artery of diameter 2 × 10-3 m if the flow must remain laminar ?
b) Do the dissipative forces become more important as the fluid velocity increases ? Discuss qualitatively.
Answer:
a) If dissipative forces are present, then some forces in liquid flow due to pressure different is spent against dissipative forces. Due to which the pressure drop becomes large.

b) The dissipative forces become more important with increasing flow velocity, because of tubulence.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 26.
a) What is the largest average velocity of blood flow in an artery of radius 2 × 10-3m if the flow must remain lanimar ?
Answer:
Here, r = 2 × 10-3m ;
D = 2r = 2 × 2 × 10-3 = 4 × 10-3m
η = 2.084 × 10-3 Pa s;
p = 1.06 × 103 kgm3
For flow tobe laminar, Nr = 2000
a) Now, Vc = \(\frac{N_r \eta}{\rho D}\)
= \(\frac{2000 \times\left(2.084 \times 10^{-3}\right)}{\left(1.06 \times 10^3\right) \times\left(4 \times 10^{-3}\right)}\) = 0.98m/s.

b) What is the corresponding flow rate ? (Take viscosity of blood to be 2.084 × 10-3 Pa s).
Answer:
Volume flowing per second = πr2Vc
= \(\frac{22}{7}\) × (2 × 10-3)2 × 0.98
= 1.23 × 10-5 m3s-1

Question 27.
A plane is in level flight at constant speed and each of its two wings has an area of 25m2. If the speed of the air is 180 km/h over the lower wing and 234 km/h over the upper wing surface, determine the plane’s mass. (Take air density to be 1 kg m-3)
Answer:
Here, V1 = 180 km/h = 50m/s, V2 = 234 km/ h = 65 m/s;
A = 2 × 25 = 50m2; P = 1kg/m3
P1 – P2 = \(\frac{1}{2}\) p (V22 – V12)
= \(\frac{1}{2}\) × 1 × (652 – 502)
Upward force = (P1 – P2) A = \(\frac{1}{2}\) × (652 – 502) × 50N
As the plane is in level flight, so
mg = (P1 – P2)A
or m = \(\frac{\left(P_1-P_2\right) A}{g}=\frac{1 \times\left(65^2-50^2\right) \times 50}{2 \times 9.8}\)
= 4.4 × 103N

Question 28.
In Millikan’s oil drop experiment, what is the terminal speed of an uncharged drop of radius 2.0 × 10-5 m and density 1.2 × 103 kg m-3. Take the viscosity of air at the temperature of the experiment to be 1.8 × 105 Pa s. How much is the viscous force on the drop at that speed ? Neglect buoyancy of the drop due to air.
Answer:
Here, r = 2.0 × 10-5m; ρ = 1.2 × 103 kg m-3;
η = 1.8 × 105 Ns m-2
P0 = 0, V = ?, F = ?
Terminal velocity V = \(\frac{2 r^2\left(\rho-\rho_0\right) g}{9 \eta}\)
= \(\frac{2 \times\left(2.0 \times 10^{-5}\right)^2 \times\left(1.2 \times 10^3-0\right) \times 9.8}{9 \times 1.8 \times 10^{-5}}\)
= 5.8 × 10-2ms-1 = 5.8 cms-1
Viscous force on the drop, F = 6πηrv
= 6 × \(\frac{22}{7}\) × (1.8 × 10-5) × (2.0 × 10-5) × (5.8 × 10-2)
= 3.93 × 10-10N.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 29.
Mercury has an angle of contact equal to 140° with soda lime glass. A narrow tube of radius 1.00 mm made of this glass is dipped in a trough containing mercury. By what amount does the mercury dip down in the tube relative to the liquid surface outside ? Surface tension of mercury at the temperature of the experiment is 0.456 N m-1. Density of mercury = 1.36 × 103 kg m-3.
Answer:
Here, θ = 140°, r = 1 × 10-3 m;
S = 0.465 Nm-1, ρ = 13.6 × 103 kg, h = ?]
Cos = 140° = – cos40° = -0.7660
Now h = \(\frac{2 S \cos \theta}{r \rho g}\)
= \(\frac{2 \times 0.465 \times \cos 140^{\circ}}{10^{-3} \times 13.6 \times 10^3 \times 9.8}\)
= \(\frac{2 \times 0.465 \times(-0.7660)}{10^{-3} \times 13.6 \times 10^3 \times 9.8}\)
= -5.34 × 10-3m
= -5.34mm
Negative value of h shows that the mercury levels is depressed in the tube.

Question 30.
Two narrow bores of diameters 3.0 mm and 6.0 mm are joined together to forma a U-tube open at both ends. If the U-tube contains water, what is the difference in its levels in the two limbs of the tube ? Surface tension of water at the temperature of the experiment is 7.3 × 10-2 N m-1. Take the angle of contact to be zero and density of water to be 1.0 × 103 kg m-3 (g = 9.8 m-2).
Answer:
Here, S = 7.3 -2 Nm-1, ρ = 1.0 × 103 kg m-3; θ = 0°
For narrow tube, 2r1 = 3.00 mm = 3 × 10-3 m or r1 =1.5 × 10-3 m .
For wider tube, 2r2 = 6.00 mm = 6 × 10-3 m or r2 = 3 × 10-3 m
let h1, h2 be the heights to which water rises in narrow tube and wider tube respectively.
Then, h1 = \(\frac{2 s \cos \theta}{r_1 \rho g}\) and h2 = \(\frac{2 s \cos \theta}{r_2 \rho g}\)
∴ Difference in levels of water in two limbs of U-tube is
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 23

Question 31.
a) It is known that density of air decreases with height y as
ρ = ρ0e-y/y0
Where p0 = 1.25 kg m-3 is the density at sea level, and y0 is a constant. This density variation is called the law of atmospheres. Obtain this law assuming that the temperature of atmosphere remains a constant (isothermal conditions). Also assume that the value of g remains constant.
Answer:
We know that the rate of decrease of density p of air is directly proportional to height y i.e.
\(\frac{-d \rho}{d y}\) ∝ p or \(\frac{d \rho}{d y}\) = – Kρ
Where K is a constant of proportionality. Here – ve sign shows that ρ decreases as y increases.
\(\frac{d y}{\rho}\) = – Kρ
Integrating it with in the conditions, as y changes fromotoy density changes from ρ0 to ρ, we have
\(\left.\int_{P_0}^p \frac{d P}{P}=-\int_0^y k d y=\left[\log e^p\right)\right]_{\rho_0}^p=k y\)
\(\frac{\rho}{\rho_0}=e^{-k y}=\rho=\rho_0 e^{-\mathrm{y} / y_0}\)

b) A large He balloon of volume 1425 m3 is used to lift a payload of 400 kg. Assum that the balloon maintains constant radius as it rises. How high does it rise ?
(Take y0 = 8000 m and PHe = 0.18 kgm-3)
Answer:
The balloon will rise to aheight, where its density becomes equal to the air at that height.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 24
y = 8000 × 1 = 8000 m
= 8 km.

Textual Examples

Question 1.
The two thigh bones (femurs), each of cross-sectional area 10 cm2 mass 40 kg. Estimate the average pressure sustained by the femurs.
Answer:
Total cross-sectional area of the femurs is A = 2 × 10 cm2 20 × 10-4 m2. The force acting on them is F = 40 kg wt = 400 N (taking g 10 ms-2). This force is acting vertically down and hence, normally on the femurs. Thus, the average pressure is
Pav = \(\frac{F}{A}\) = 2 × 105 N m-2

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 2.
What is the pressure on a swimmer 10m below the surface of a lake ?
Answer:
Here
h = 10 m and p = 1000 kg m-3.
Take g 10 m S-2
From Equation = P = Pa + ρgh
P = Pa + ρgh
= 1.01 × 105 Pa + 1000 kgm-3 × 10m S-2 × 10 m
= 2.10 × 105 Pa
≈ 2 atm
This is a 100% increase in pressure from surface level. At a depth of 1 km the increase in pressure is 100 atm! Submarines are designed to withstand such enormous pressures.

Question 3.
The density of the atmosphere at sea level is 1.29 kg/m3. Assume that it does not change with altitude. Then how high would the atmosphee extend ?
Answer:
We use P – Pa = ρgh
ρgh = 1.29 kg m-3 × 9.8 ms2 × hm
= 1.01 × 105 pa
∴ h = 7989 m ≈ 8 km
In reality the density of air decreases with height. So does the value of g. The atmospheric cover extends with decreasing press-ure over 100 km. We should also note that the sea level atmospheric pressure is not always 760 mm of Hg. A drop in the Hg level by 10 mm or more is a sign of an approaching storm.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 4.
At a depth of 1000 m in an ocean
(a) What is the absolute pressure ?
b) What is the guage Pressure ?
c) Find the force acting on the window of area 20 cm × 20 cm of a submarine at this depth, the interior of which is maintained at sealevel atmospheric pressure. (The density of sea water is 1.03 × 103 kg m-3, g = 10ms-2.
Answer:
Here h = 1000 m and ρ = 1.03 × 103 kg m-3
a) From P2 – P1 = ρgh absolute pressure
P = Pa + ρgh
= 1.01 × 105 Pa + 1.03 × 103 kg m-3 × 10 m s-2 × 1000 m
= 104.01 × 105 Pa .
= 104 atm

b) Gauge pressure is P – Pa = ρgh = Pg
Pg = 1.03 × 103 kg m-3 × 10 m s2 × 1000 m
= 103 × 105 Pa
≈ 103 atm

c) The pressure outside the submarine is P = Pa + ρgh and the pressure inside it is Pa. Hence, the net pressure acting on the window is gauge pressure, Pg = ρgh. Since the area of the window is A = 0.04 m2, the force acting on it is
F = PgA = 103 × 105 Pa × 0.04m2
= 4.12 × 105 N
≈ 103 atm

Question 5.
Two syringes of different cross sections A1, A2 and lengths L1, L2 (without needles) filled with water are connected with a tightly fitted rubber tube filled with water. Diameters of the smaller piston and larger piston are 1.0 cm and 3.0 cm respectively.
a) Find the force exerted on the larger piston when a force of ION is applied to the smaller piston, b) if the smaller piston is pushed in through 6.0 cm,’how much does the larger piston move out ?
Answer:
a) Since pressure is transmitted undiminished throughout the fluid.
F2 = \(\frac{A_2}{A_1} F_1=\frac{\pi\left(3 / 2 \times 10^{-2} m\right)^2}{\pi\left(1 / 2 \times 10^{-2} \mathrm{~m}\right)^2} \times 10 \mathrm{~N}\)
= 90 N

b) Water is considered to be perfectly incompressible. Volume covered by the move-ment of smaller piston inwards is equal to volume moved outwards due to the larger piston.
L1A1 = L2A2
L2 = \(\frac{A_1}{A_2} L_1=\frac{\pi\left(1 / 2 \times 10^{-2} \mathrm{~m}\right)^2}{\pi\left(3 / 2 \times 10^{-2} \mathrm{~m}\right)^2}\)
= × 6 × 10-2m
≃ 0.67 × 10-2m = 0.67 cm.
Note, atmospheric pressure is common to both pistons and has been ignored.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 6.
In a car lift compressed air exerts a force F1 on a small piston having a radius of 5.0 cm. This pressure is transmitted to a second piston or radius 15 cm (Fig). If the mass of the car to be lifted is 1350 kg, calculate F1. What is the pressure necessary to accomplish this task ? (g = 9.8 ms-2).
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 25
Answer:
Since pressure is transmitted undiminished throughout the fluid.
F1 = \(\frac{A_1}{A_2} F_2=\frac{\pi\left(5 \times 10^{-2} \mathrm{~m}\right)^2}{\pi\left(15 \times 10^{-2} \mathrm{~m}\right)^2}\)
= (1350 N × 9.8m s-2) = 1470 N
= 1.5 × 103N
The air pressure that will produce this force is
P = \(\frac{F_1}{A_1}=\frac{1.5 \times 10^{-3} \mathrm{~N}}{p\left(5 \times 10^{-2}\right)^2 \mathrm{~m}}\) = 1.9 × 105 Pa
This is almost double the atmospheric pressure.

Question 7.
Blooc velocity : The flow of blood in a large artery of an anesthetised dog is diverted through a Venturi meter. The wider part of the meter has a cross-sectional area equal to that of the artery. A = 8 mm2. The harrower part has an area = 4mn2. The pressure drop in the artery is 24 Pa. What is the speed of the blood in the artery ?
Answer:
We take the density of blood from whole blood to be 1.06 × 103 kg m3. The ratio of the areas is \(\left(\frac{\mathrm{A}}{\mathrm{a}}\right)\) = 2
Using v1 = \(\left(\sqrt{\frac{2 \rho_m g h}{\rho}}\right)\left(\left(\frac{A}{2}\right)^2-1\right)^{-1 / 2}\)
we obtain
v1 = \(\sqrt{\frac{2 \times 24 \mathrm{pA}}{1060 \mathrm{~kg} \mathrm{~m}^{-3} \times\left(2^2-1\right)}=0.125 \mathrm{~m} \mathrm{~s}^{-1}}\)

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 8.
A fully loaded Boeing aircraft has a mass of 3.3 × 105 kg. Its total wing area is 500 m2. It is in level flight with a speed of 960 km/h. a) Estimate the pressure difference between the lower and upper surfaces of the wings (b) Estimate the fractional increase in the speed of the air on the upper surface of the wing relative to the lower surface. [The density of air is ρ = 1.2 kgm-3].
Answer:
a) The weight of’the Boeing aircraft is balanced by the upward force due to the pressure difference
∆P × A – 3.3 × 105 kg × 9.8 = mg.
∆P = (3.3 × 105 kg × 9.8 m s-2) / 500 m2
= 6.6 × 103 N m-2

b) We ignore the small height difference between the top and bottom sides in
P1 + (\(\frac{1}{2}\)) ρv12 + ρgh1 = P2 + (\(\frac{1}{2}\))ρv22 + ρgh2
The pressure difference between them is then
∆P = \(\frac{\rho}{2}\left(v_2^2-v_1^2\right)\)
Where v2 is the speed of air over the upper surface and v1 is the speed under the bottom surface.
(v2 – v1) = \(\frac{2 \Delta P}{\rho\left(v_2+v_1\right)}\)
Taking the average speed vav (v2 + v1)/2 – 960 km/h = 267 m s-1, we have
(v2 – v1)/vav = \(\frac{\Delta \mathrm{P}}{\rho v_{\mathrm{av}}^2}\) ≈ 0.08
The speed of air above the wing needs to be only 8% higher than that below.

Question 9.
A metal block of area 0.10 m2 is connected to a 0.010 kg mass via a string that passes over an ideal pulley (considered massless and frictionless), as in Fig. A liquid with a film thickness of 0.30 mm is placed between the block and the table. When released, the block moves to the right with a constant speed of 0.085 ms-1. Find the co-efficient of viscosity of the liquid.
AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids 26
Answer:
The metal block moves to the right because of the tension in the string. The tension T is equal in magnitude to the weight of the suspended mass m. Thus the shear force F is
F = T = mg = 0.010 kg × 9.8 ms-2
= 9.8 × 10-2 N
Shear stress on the fluid = F/A = \(\frac{9.8 \times 10^{-2}}{0.10}\)
Strain rate = \(\frac{v}{l}=\frac{0.085 \mathrm{~ms}^{-1}}{0.3 \times 10^{-3} \mathrm{~m}}\)
η = \(\frac{\text { stress }}{\text { strain rate }}\)
= \(\frac{\left(9.8 \times 10^{-2} \mathrm{~N}\right)\left(0.30 \times 10^{-3} \mathrm{~m}\right)}{\left(0.085 \mathrm{~ms}^{-1}\right)\left(0.10 \mathrm{~m}^2\right)}\)
= 3.45 × 10-3 Pa s

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 10.
The terminal velocity of a copper ball of radius 2.0 mm falling through a tank of oil at 20°C is 6.5 cm s-1. Compute the viscosity of the oil at 20°C. Density of oil is 1.5 × 103 kg m-3, density of copper is 8.9 × 103 kg m-3.
Answer:
We have vt = 6.5 × 10-2 ms-1,
a = 2 × 10-3m,
g = 9.8 ms-2, ρ = 8.9 × 103 kg m-3,
σ = 1.5 × 103 kg m-3. From
vt = \(\frac{2 a^2(\rho-\sigma) g}{(9 \eta)}\)
η = \(\frac{2}{9} \times \frac{\left(2 \times 10^{-3}\right) \mathrm{m}^2 \times 9.8 \mathrm{~ms}^{-2}}{6.5 \times 10^{-2} \mathrm{~ms}^{-1}}\) × 7.4 × 103 kg m-3
= 9.9 × 10-1 kg m-1s-1

Question 11.
a) The flow rate of water from a tap of diameter 1.25 cm is L7min. The co-efficient of viscosity of water is 10-3 Pa s.
b) After sometime the flow rate is increased to 3L / min. Characterise the flow for both the flow rates.
Answer:
a) Let the speed of the flow be v and the diameter of the tap be d = 1.25 cm. The volume of the water flowing out per second is
Q = v × π d2/4
v = 4Q / d2 π
We then estimate the Reynolds number to be
Re = 4vQ / πdη
= 4 × 103 kg m-3 × Q / (3.14 × 1.25 × 10-2 m × 10-3 Pa S)
= 1.019 × 108 m-3 SQ
Since initially (a)
Q = 0.48 L/min = 8cm3/s
= 8 × 10-6 m3 s-1, we obtain,
Re = 815
Since this is below 1000, the flow is steady.
After some time

b) When Q = 3L/ min = 50 cm3, s = 5 × 10-5 m3 s-1 we obtain,
Re = 5095
The flow will be turbulent. You may carry out an experiment in your washbasin to determine the ransition from laminar to turbulent flow.

AP Inter 1st Year Physics Study Material Chapter 11 Mechanical Properties of Fluids

Question 12.
The lower end of a capillary tube of diameter 2.00 mm is dipped 8.00 cm below the surface of water in a beaker. What is the pressure required in the tube in order to blow a hemispherical bubble at its end in water ? The surface tension of water at temperature of the experiments is 7.30 × 10-2 Nm1. 1 atmospheric pressure = 1.01 × 105 Pa, density of water = 1000 kg/m3, g = 9.8 × ms-2. Also calculate the excess pressure.
Answer:
The excess pressure in a bubble of gas in a liquid is given by 2S / r, where S is the surface tension of the liquid gas interface. You should note there is only one liquid surface in this case. (For a bubble of liquid in a gas, there are two liquid surfaces, so the formula for excess pressure in that case is 4S / r.) The radius of the bubble is r. Now the pressure outside the bubble, within water, P0 equals atmospheric pressure plus the pressure due to 8.00 cm of water column. That is
P0 = (1.01 × 105 Pa + 0.08 m × 1000 kg m-3 × 9.80 m s-2)
= 1.01784 × 105 Pa. .
Therefore, the pressure inside the bubble is
P1 = P0 + 2S / r (as r = 1 mm)
= 1.01784 × 105 Pa + (2 × 7.3 × 10-2 Pa m/10-3 m)
= (1.01784 + 0.00146) × 105 Pa
= 1.02 × 105 Pa
where the radius of the bubble is taken to be equal to the radius of the capillary tube, since the bubble is hemispherical ! (The answer has been rounded off to three significant figures). The excess pressure in the bubble is 146 Pa from (1.0178 + 0.00146) × 105 Pa.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Andhra Pradesh BIEAP AP Inter 1st Year Physics Study Material 10th Lesson Mechanical Properties of Solids Textbook Questions and Answers.

AP Inter 1st Year Physics Study Material 10th Lesson Mechanical Properties of Solids

Very Short Answer Questions

Question 1.
State Hooke’s law of elasticity.
Answer:
“With in the elastic limit stress directly proportional to the strain”.
Stress ∝ strain
Stress = k × strain
k = \(\frac{\text { Stress }}{\text { Strain }}\)
Where k is modulus of elasticity.

Question 2.
State the units and dimensions of stress.
Answer:

  1. Stress = \(\frac{\text { Force }}{\text { Area }}=\frac{F}{A}\)
    S.l units → N/m2 (or) Pascal
  2. Dimensional formula
    Stress = \(\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^2}\) = [ML-1T-2].

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 3.
State the units and dimensions of modulus of elasticity.
Answer:
Modulus of elasticity (k) = \(\frac{\text { Stress }}{\text { Strain }}\)
Units → N/m2 (or) Pascal
Dimensional formula → [ML-1T-2]

Question 4.
State the units and dimensions of Young’s modulus.
Answer:
Young’s modules (y) = \(\frac{\text { LongitudinalStress }}{\text { Longitudinal Strain }}=\frac{\frac{F}{A}}{\frac{e}{L}}\)
Units → N/m2 (or) Pascal
Dimensional formula → [ML-1T-2]

Question 5.
State the units and dimensions of modulus of rigidity.
Answer:
Modulus of rigidity (G) = \(\frac{F}{A \theta}=\frac{\text { Shearing Stress }}{\text { Shearing Strain }}\)
Units → N/m2 (or) Pascal
Dimensional formula → [ML-1T-2].

Question 6.
State the units and dimensions of Bulk modulus.
Answer:
Bulk modulus (B) = \(\frac{\text { Bulk Stress }}{\text { Bulk Strain }}=\frac{-P V}{\Delta V}\)
Units → N/m2 (or) Pascal
Dimensional formula → [ML-1T-2].

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 7.
State the examples of nearly perfect elastic and plastic bodies.
Answer:

  • Nearly perfect elastic bodies are quartz fibre.
  • Nearly perfect plastic bodies are dough and day.

Short Answer Questions

Question 1.
Define Hooke’s Law of elasticity, proportionality, permanent set and breaking stress.
Answer:
Hooke’s law : “With in the elastic limit stress is directly proportional to the strain”.
Stress ∝ strain
Stress = k × strain
Where k is modulus of elasticity.
Proportionality limit: The maximum stress developed in a body till it obeys Hookes law is called proportionality limit.
Permanent Set : Permanent deformation produced when a body is stretched beyond its elastic limit.
Breaking stress : The maximum stress a body can bear before it breaks.

Question 2.
Define modulus of elasticity, stress, strain and Poisson’s ratio.
Answer:
Modulus of elasticity : It is the ratio stress applied on a body to the strain produced in the body.
k = \(\frac{\text { Stress }}{\text { Strain }}\)
S.I unit → N/m2 (or) Pascal
Stress : When a body is subjected to an external force, the force per unit area is called stress.
Stress = \(\frac{\text { Force }}{\text { Area }}=\frac{F}{A}\)
S.I unit → N/m2 (or) Pascal
Strain : When deforming forces act on a body, the fractional deformation produced in the body. It has no units

Poisson’s ratio (σ) : The ratio between lateral strain to longitudinal strain of a body is called poisson’s ratio.
σ = \(\frac{\text { Lateral Strain }}{\text { Longitudinal Strain }}=\frac{\frac{-\Delta \mathrm{r}}{\mathrm{r}}}{\frac{\Delta \mathrm{L}}{\mathrm{L}}}\)

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 3.
Define Young’s modulus. Bulk modulus and Shear modulus.
Answer:
Young’s modulus (y) : With in the elastic limit, the ratio of longitudinal stress to longitudinal strain is called young’s modulus.
y = \(\frac{\text { Longitudinal Stress }}{\text { Longitudinal Strain }}=\frac{\frac{F}{A}}{\frac{e}{L}}\)
y = \(\frac{\mathrm{FL}}{\mathrm{A} \cdot \mathrm{e}}\)
S.I unit → N/m2 (or) Pascal

Bulk modulus (B) : With in the elastic limit, it is defined as the ratio of Bulk stress to Bulk strain
B = \(\frac{\text { Bulk Stress }}{\text { Bulk Strain }}\)
B = \(\frac{\frac{\mathrm{F}}{\mathrm{A}}}{\frac{-\Delta \mathrm{V}}{\mathrm{V}}}=\frac{-\mathrm{PV}}{\Delta \mathrm{V}}\) (∵ -ve sign indicates volume decreases)
S.I unit → N/m2 (or) Pascal

Rigidity modulus (G) : With in the elastic limit, it is defined as the ratio of shearing stress to shearing strain.
G = \(\frac{\text { Shearing Stress }}{\text { Shearing Strain }}\)
G = \(\frac{\frac{F}{A}}{\theta}=\frac{F}{A \theta}\)
S.I unit → N/m2 (or) Pascal

Question 4.
Define stress and explain the types of stress. [T.S. Mar. 16]
Answer:
Stress : The restoring force per unit area is called stress
∴ Stress = \(\frac{\text { Restoring Force }}{\text { Area }}=\frac{F}{A}\)
Stress is classified into three types.

  1. Longitudinal stress
  2. Volume (or) Bulk stress
  3. Tangential (or) shearing stress

1. Longitudinal stress (or) Linear stress : When a normal stress changes the length of a body, then it is called longitudinal stress.
Longitudinal stress = \(\frac{F}{A}\)

2. Volume (or) Bulk stress : When a normal stresschanges the volume of a body, then it is called volume stress.
Volume stress = \(\frac{\text { Force }}{\text { Area }}\) = pressure.

3. Tangential (or) shearing stress : When the stress is tangential to the surface due to the application of forces parallel to the surface, then the stress is called tangential stress.
Tangential stress = \(\frac{F}{A}\).

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 5.
Define strain and explain the types of strain.
Answer:
Strain : It is the ratio of change in dimension to its original dimension.
Strain = \(\frac{\text { Changes in dimension }}{\text { Original dimension }}\)
Strain is of three types.
1. Longitudinal strain : It is the ratio of change in length to its original length.
Longitudinal strain = \(\frac{\text { Changes in length }}{\text { Original length }}=\frac{e}{L}\)

2. Shearing strain (or) Tangential strain : When simultaneous compression and extension in mutually perpendicular direction takes place in a body, the change of shape it under goes, is called shearing strain.
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 1
Shearing strain (θ) = \(\frac{1}{L}\)

3. Bulk (or) volume strain : It is the ratio of change in volume to its original volume is called bulk strain. It is called Bulk (or) volume strain.
Bulk strain = \(\frac{\text { Change in Volume }}{\text { Original Volume }}=\frac{\Delta V}{V}\)

Question 6.
Define strain energy and derive the equation for the same. [Mar. 14]
Answer:
The potential energy stored in a body when stretched is called strain energy.
Let us consider a wire of length L and cross – sectional area A. Let x be the change in length of the wire by the application of stretching force F.
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 2
Strain energy per unit volume = \(\frac{1}{2} \times \frac{F}{A} \cdot \frac{x}{L}\)
= \(\frac{1}{2}\) × stress × strain.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 7.
Explain why steel is preferred to copper, brass, aluminium in heavy-duty machines and in structural designs.
Answer:
The elastic behavior of materials plays an important role in everyday life. Designing of buildings, the structural design of the columns, beams and supports require knowledge of strength of material used. The elasticity of the material is due to stress developed with in the body, when extenal force acts on it. A material is of more elastic nature if it develops more stress (or) restoring force. Steel develops more stress than copper, brass, aluminium for same strain. So steel is more elastic.
y = \(\frac{\text { Stress }}{\text { Strain }}\)

Question 8.
Describe the behaviour of a wire under gradually increasing load. [A.P. – Mar. ’18, ’16, ’15; TS – Mar. ’18, ’15, ’13]
Answer:
When the load is increased in steps, a graph is drawn between stress on y-axis and corresponding strain on x-axis.
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 3
1. Proportionality limit : In the linear position OA, stress is proportional to strain, i.e. Hookes law is obeyed by the wire upto point A. The graph is a straight lint. When ever the stretching force at A is removed, the wire regains its original length.
A is called proportionality limit.

2. Elastic limit : In the graph B is the elastic limit.
Through the wire doesnot obey Hooke’s law at B. The wire regains its original length after removing the stretching force at B. upto point B the wire is under elastic behaviour.

3. Permanent set (or) yield point: In the graph c is the yield point. If the stretching force at c is removed, the wire doesnot regain its original length and the length of the wire changes permanently. In this position the wire flows like a viscous liquid. After the point c, the wire is under plastic behavior, c is called permanent set (or) yield point.

4. Breaking point: When the stress increased, the wire becomes thinner and thinner. When the stress increases to a certain limit the wire breaks. The stress at which the wire breaks is called breaking stress and the point D is called breaking point.

5. Elastic fatigue : The state of temperary loss of elastic nature of a body due to continuous strain is called elastic fatigue. When a body is subjected to continuous strain with in the elastic limit, it appears to have lost Hastic property temporarily to some extent and becomes weak.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 9.
Two identical solid balls, one of ivory and the other of wet-day are dropped from the same height onto the floor. Which one will rise to greater height after striking the floor and why ?
Answer:
Ivory ball rise to greater height after striking the floor. The ivory ball regain its original shape after striking the floor. The elastic property of ivory ball is more. Where as wet-day ball does not regain its original shape after striking the floor.

So wet-day ball acts like plastic body.

Question 10.
While constructing buildings and bridges a pillar with distributed ends is preferred to a pillar with rounded ends. Why ?
Answer:
Use of pillars (or) columns is also very common in buildings and bridges. A pillar with rounded ends supports less load than that with a distributed shape at the ends. The precise design of a bridge (or) a building has to take into account the conditions under which it will function, the cost and long period, reliability of usable materials.
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 4

Question 11.
Explain why the maximum height of a mountain on earth is approximately 10 km ?
Answer:
The maximum height of a mountain on earth is 10 km, can also be provided by considering the elastic properties of rocks. A mountain base is not under uniform compression and this provides some shearing stress to rocks under which they can flow. The stress due to all the material on the top should be less than the critical shearing stress at which the rocks flow.

At the bottom of a mountain of height h, the force per unit area due to the weight of the mountain is hρg. Where ρ is the density of the mountain. The material at the bottom experiences this force in the vertical direction and the sides of the mountain are free.
There is a shear component, approximately hρg itself.
Elastic limit for 3 typical rock is 30 × 107 N/m2
hρg = 30 × 107 (ρ = 3 × 103 kg/m3)
h = \(\frac{30 \times 10^7}{3 \times 10^3 \times 10}\)
h = 10 km.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 12.
Explain the concept of Elastic Potential Energy in a stretched wire and hence obtain the expression for it.
Answer:
“When a wire is put under a tensile stress, work is done against the inter-atomic forces. The work is stored in the wire in the form of elastic potential energy”.

Expression for elastic potential energy : Consider a wire of length L and area of cross section A is subjected to a deforming force F along the length of the wire. Let the length of the wire is elongated by l.
Young’s modulus (y) = \(\frac{\mathrm{FL}}{\mathrm{Al}}\)
F = \(\frac{\mathrm{yAl}}{\mathrm{L}}\) ……………. (1)
Work done due to further elongation of small length dl
Work done (dw) = F × dl = (\(\frac{\mathrm{yAl}}{\mathrm{L}}\))dl ……………… (2)
Total work done in increasing the length of the wire from L to (L + l)
w = \(\int_0^1 \frac{\mathrm{yAl} }{\mathrm{L}} \mathrm{dl}=\frac{\mathrm{yA}}{2} \times \frac{l^2}{\mathrm{~L}}\)
w = \(\frac{1}{2} \times \mathrm{y} \times\left(\frac{l}{\mathrm{~L}}\right)^2 \times \mathrm{Al}\)
= \(\frac{1}{2}\) y × stress2 × volume of the wire
w = \(\frac{1}{2}\) × stress × strain × volume of the wire.
This work is stored in the wire in elastic potential energy (u).

Long Answer Question

Question 1.
Define Hooke’s law of elasticity and describe an experiment to determine the Young’s modulus of the material of a wire.
Answer:
Hooke’s law : With in the elastic limit, stress is directly proportional to the strain.
Stress ∝ strain
Stress = k × strain
Where k is modulus of elasticity.
Determination of young’s modulus of the material of a wire:
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 5
Young’s Modulus of the Material of a wire

  1. It consists of two long straight wires of same length and same area of cross-section suspended side by side from a rigid .support.
  2. The wire A (reference wire) carries a metre scale M and a pan to place a weight.
  3. The wire B (experimental wire) carries a pan in which known weights can be placed.
  4. A vernier scale v is attached to a pointer at the bottom of the experimental wire B and the main scale M is fixed to the wire A.
  5. The weights placed in the pan, the elongation of the wire is measured by the vernier arrangement.
  6. The reference wire is used to compensate for any change in length that may occur due to change in room temperature.
  7. Both the reference and experimental wires are given an initial small load to keep the wires straight and the vernier reading is noted.
  8. Now the experimental wire is gradually loaded with more weights, the vernier reading is noted again.
  9. The difference between two vernier readings gives the elongation produced in the wire.
  10. Let r and L be the radius and initial length of the experimental wire. Let M be the mass that produced an elongation ∆L in the wire.
    Young’s modulus of the material of the experimental wire is given by
    y = \(\frac{\text { Longitudinal Stress }}{\text { Longitudinal Strain }}=\frac{\frac{\mathrm{F}}{\mathrm{A}}}{\frac{\Delta \mathrm{L}}{\mathrm{L}}}\)
    y = \(\frac{\mathrm{FL}}{\mathrm{A} \Delta \mathrm{L}}\)
    y = \(\frac{\mathrm{MgL}}{\pi r^2 \times \Delta \mathrm{L}}\)
    From above equation young’s modulus of the material of the wire is determined.

Problems

Question 1.
A copper wire of 1mm diameter is stretched by applying a force of 10 N. Find the stress in the wire.
Solution:
D = 1 m.m = 10-3m, r = \(\frac{D}{2}\) = 0.5 × 10-3 m.
F = 10 N
Stress = \(\frac{F}{A}=\frac{F}{\pi r^2}\)
= \(\frac{10}{3.14 \times\left(0.5 \times 10^{-3}\right)^2}\)
= 1.273 × 107 N/m2.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 2.
A tungsten wire of length 20 cm is stretched by 0.1 cm. Find the strain on the wire.
Solution:
L = 20 × 10-2 m, ∆L = 0.1 × 10-2 m
Strain = \(\frac{\Delta \mathrm{L}}{\mathrm{L}}=\frac{0.1 \times 10^{-2}}{20 \times 10^{-2}}\) = 0.005.

Question 3.
If an iron wire is stretched by 1 %, what is the strain on the Wire ?
Solution:
Strain = \(\frac{\Delta \mathrm{L}}{\mathrm{L}}\) = 1 %
Strain = \(\frac{1}{100}\) = 0.01

Question 4.
A brass wire of diameter 1mm and length 2 m is streched by applying a force of 20N. If the increase in length is 0.51 mm. find
(i) the stress,
(ii) the strain and
(iii) the Young’s modulus of the wire.
Solution:
D = 1 m.m, r = \(\frac{D}{2}\) = 0.5 × 10-3 m
L = 2 m, F = 20 N, ∆L = 0.51 m.m = 0.51 × 10-3 m
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 6
= 9.984 × 1010 N/m2

Question 5.
A copper wire and an aluminium wire have lengths in the ratio 3 : 2, diameters in the ratio 2 : 3 and forces applied in the ratio 4: 5. Find the ratio of increase in length of the two wires. (Ycu = 1.1 × 1011 Nm-2, YAl = 0.7 × 1011 Nm-2).
Solution:
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 7
= \(\frac{4}{5} \times \frac{3}{2} \times\left(\frac{0.7 \times 10^{11}}{1.1 \times 10^{11}}\right) \times\left(\frac{3}{2}\right)^2\)
\(\frac{\Delta \mathrm{L}_1}{\Delta \mathrm{L}_2}=\frac{189}{110}\)

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 6.
A brass wire of cross-sectional area 2 mm2 is suspended from a rigid support and a body of volume 100 cm3 is attached to its other end. If the decrease in the length of the wire is 0.11 mm, when the body is completely immersed in water, find the natural length of the wire.
(Ybrass = 0.91 × 1011 Nm-2, ρwater = 103 kg m-3).
Solution:
A = πr2 = 2 × 10-6 m2, V = 100 × 10-6 = 10-4 m3
∆L = 0.11 × 10-3 m, yBrass = 0.91 × 1011 N/m2, ρ = 103 kg/m3
y = \(\frac{M g L}{A \times \Delta L}=\frac{v \rho g L}{A \times \Delta L}\)
L = \(\frac{\mathrm{yA} \Delta \mathrm{L}}{\mathrm{v \rho g}}=\frac{0.91 \times 10^{11} \times 2 \times 10^{-6} \times 0.11 \times 10^{-3}}{10^{-4} \times 10^3 \times 9.8}\)
L = 2.04 m.

Question 7.
There are two wires of same material. Their radii and lengths are both in the ratio 1:2. If the extensions produced are equal, what is the ratio of loads ?
Solution:
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 8

Question 8.
Two wires of different material have same lengths and areas of cross¬section. What is the ratio of their increase in length when forces applied are the same ?
(Y1 = 0.9 × 1011 Nm-2, Y2 = 3.6 × 1011 Nm-2)
Solution:
y1 = 0.9 × 1011 Nm-2
y2 = 3.6 × 1011 Nm-2
y = \(\frac{F L}{A \times \Delta L}\)
∆L ∝ \(\frac{1}{y}\)
\(\frac{(\Delta L)_1}{(\Delta L)_2}=\frac{y_2}{y_1}=\frac{3.6 \times 10^{11}}{0.9 \times 10^{11}}=\frac{4}{1}\)

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 9.
A metal wire of length 2.5 m and area of cross-section 1.5 × 10-6 m2 is stretched through 2 mm. if its Young’s modulus is 1.25 × 1011 N.m2, find the tension in the wire.
Solution:
L = 2.5 m, A = 1.5 × 10-6 m2
∆L = 2 × 10-9 m
y = 1.25 × 1011 N.m2
y = \(\frac{\mathrm{FL}}{\mathrm{A} \Delta \mathrm{L}}\)
F = \(\frac{\mathrm{yA} \Delta \mathrm{L}}{\mathrm{L}}\)
= \(\frac{1.25 \times 10^{11} \times 1.5 \times 10^{-6} \times 2 \times 10^{-3}}{2.5}\)
F = 150 N

Question 10.
An aluminium wire and a steel wire of the same length and cross-section are joined end-to-end. The composite wire is hung from a rigid support and a load is suspended from the free end. If the increase in length of the composite wire is 1.35 mm, find the ratio of the
(i) stress in the two wires and
(ii) strain in the two wires.
(YAl = 0.7 × 1011 N.m2, YSteel = 2 × 1011 Nm2).
Solution:
YAl = 0.7 × 1011 N.m2, YSteel = 2 × 1011 Nm2
∆L1 + ∆L2 = 1.35 mm ……………… (1)
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 9

Question 11.
A 2 cm cube of some substance has its upper face displaced by 0.15 cm due to a tangential force of 0.3 N while keeping the lower face fixed, Calculate the rigidity modulus of the substance.
Solution:
L = 2 × 10-2 m, A = L2 = 4 × 10-4 m2
∆x = 0.15 × 10-2 m
F = 0.3 N
G = \(\frac{\frac{F}{A}}{\frac{\Delta x}{L}}=\frac{F L}{A \Delta x}\) (∵ θ = \(\frac{\Delta x}{L}\))
G = \(\frac{0.3 \times 2 \times 10^{-2}}{4 \times 10^{-4} \times 0.15^6 \times 10^{-2}}\)
G = 104 N/m2

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 12.
A spherical ball of volume 1000 cm3 is subjected to a pressure of 10 Atmosphere. The change in volume is 10-2 cm3. If the ball is made of iron, find its bulk modulus.
(1 atmosphere = 1 × 105 Nm-2).
Solution:
v = 1000 cm3 = 1000 × 10-6 = 10-3 m3
p = 1 atm = 1 × 105 = 105 N/m2
-∆v = 10-2 cm3 = 10-2 × 10-6 = 10-8 m3
Bulk modulus (B) = \(\frac{-p v}{\Delta v}\)
= \(\frac{10^5 \times 10^{-3}}{10^{-8}}\)
B = 1010 N/m2.

Question 13.
A copper cube of side of length 1 cm is subjected to a pressure of 100 atmosphere. Find the change in its volume if the bulk modulus of copper is 1.4 × 1011 Nm-2. (1 atm = 1 × 105 Nm-2).
Solution:
l = 1 cm = 10-2 m
V = Volume of the cube = l3 = 1cm3
= 10-6 m3
P = 100 atm = 100 × 105 = 107 N/m2
B = 1.4 × 1011 N/m2
B = \(\frac{-P V}{\Delta V}\)
-∆V = \(\frac{P V}{B}=\frac{10^7 \times 10^{-6}}{1.4 \times 10^{11}}\)
-∆V = 0.7143 × 10-10 m3.

Question 14.
Determine the pressure required to reduce the given volume of water by 2%. Bulk modulus of water is 2.2 × 109 Nm-2.
Solution:
\(\frac{-\Delta V}{V}\) = 2 % = \(\frac{2}{100}\)
B = 2.2 × 109 Nm2
B = \(\frac{-P V}{\Delta V}\)
P = -B × \(\frac{\Delta V}{V}\)
= 2.2 × 109 × \(\frac{2}{100}\)
P = 4.4 × 107 N/m2.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 15.
A steel wire of length 20 cm is stretched to increase its length by 0.2 cm. Find the lateral strain in the wire if the Poisson’s ratio for steel is 0.19.
Solution:
L = 20 cm = 20 × 10-2 m
∆L = 0.2 × 10-2 m
σ = 0.19
σ = \(\frac{\text { Lateral strain }}{\text { Longitudinal strain }\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right)}\)
Lateral strain = σ × \(\frac{\Delta L}{L}\)
= \(\frac{0.19 \times 0.2 \times 10^{-2}}{20 \times 10^{-2}}\)
= 0.0019

Additional Problems

Question 1.
A steel wire of length 4.7 m and cross-sectional area 3.0 × 10-5 m2 stretches by the same amount as a copper wire of length 3.5 m and cross-sectional area of 4.0 × 10-5 m2,
Solution:
Given, for steel wire, a1 = 3.0 × 10-5 m2, l1 = 4.7 m, ∆l1 = ∆l, F1 = F
For copper wire, a2 = 4.0 × 10-5 m2, l2 = 3.5 m, ∆l2 = ∆l, F2 = F .
Let y1, y2 be the young modulus of steel wire and copper wire respectively.
∴ y1 = \(\frac{F_1}{a_1} \times \frac{l_1}{\Delta l_2}=\frac{F}{3.0 \times 10^{-5}} \times \frac{4.7}{\Delta l}\) ………….. (i)
and y2 = \(\frac{F_2 \times l_2}{a_2 \times \Delta l_2}=\frac{F \times 3.2}{4 \times 10^{-5} \times \Delta l}\)
\(\frac{\mathrm{y}_1}{\mathrm{y}_2}=\frac{4.7 \times 4 \times 10^{-5}}{3.5 \times 3.0 \times 10^{-5}}\) = 1.8
Here y1 : y1 = 1.8 : 1.

Question 2.
Figure shows the strain-stress curve for a given material. What are (a) Young’s modulus and (b) approximate yield strength for this material ?
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 10
Solution:
a) From graph, for stress = 150 × 106 Nm-2 the corresponding strain = 0.002
young’s modulus y = \(\frac{\text { Stress }}{\text { Strain }}=\frac{150 \times 10^6}{0.002}\)
= 7.5 × 1010 Nm-2

b) Approximate yeild strength will be equal to the maximum stress it can substain with out crossing the elastic limit. Therefore, the approximate yeild strength
= 300 × 106 Nm-2
= 3 × 108 Nm-2

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 3.
The stress-strain graphs for materials A and B are shown in Fig.
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 11
The graphs are drawn to the same scale.
a) Which of the materials has the greater Young’s modulus ?
b) Which of the two is the stronger material ?
Solution:
a) From the two graphs we note that for a given strain, stress for A is more than that of B. Hence young’s modulus (= stress/ strain) is greater for A than that of B.

b) A is stronger than B. Strength of a material is measured by the amount of stress required to cause fracture, corresponding to the point of fracture.

Question 4.
Read the following two statements below carefully and state, with reasons, if it is true or false.
a) The Young’s modulus of rubber is greater than that of steel;
b) The stretching of a coil is determined by its shear modulus.
Solution:
a) False, because for a given stress there is more strain in rubber than steel and modulus of elasticity is inversly proportional to strain.

b) True because the strecting of coil simply changes its shape without any change in the length of the wire used in the coil due to which shear modulus of elasticity is involved.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 5.
Two wires of diameter 0.25 cm, one made of steel and the other made of brass are loaded as shown in Fig. The unloaded length of steel wire is 1.5 m and that of brass Wire is 1.0 m. Compute the elongations of the steel and the brass wires.
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 12
Solution:
For steel wire, total force on steel wire,
F1 = 4 + 6 = 10 kg, f = 10 × 9.8 N
l1 = 1.5 m, ∆l1 = ?, 2r1 = 0.25cm or r1 =(0.25/2)cm = 0.125 × 10-2 m
y1 = 2.0 × 1011 pa
For brass wire, F2 = 6.0 kg, f = 6 × 9.8 N
2r2 = 0.25 cm or r2 = (0.25/2) cm = 0.125 × 10-2 m,
y2 = 0.91 × 1011 pa, l2 = 1.0 m, ∆l2 = ?
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 13

Question 6.
The edge of an aluminium cube is 10 cm long. One face of the cube is firmly fixed to a verticle wall. A mass of 100 kdis then attached to the opposite face of the cube. The shear modulus of aluminium is 25 GPa. What is the vertical deflection of this face?
Solution:
A = 0.10 × 0.10 = 10-2 m2, F = mg = 100 × 10 N
Shearing strain = \(\frac{\Delta \mathrm{L}}{\mathrm{L}}=\frac{\left(\frac{\mathrm{F}}{\mathrm{A}}\right)}{\eta}\)
or ∆L = \(\frac{F L}{A \eta}\)
= \(\frac{(100 \times 10) \times(0.10)}{10^{-2} \times\left(25 \times 10^9\right)}\) = 4 × 10-7 m.

Question 7.
Four identical hollow cylindrical columns of mild steel support a big structure of mass 50,000 kg. The inner and outer radii of each column are 30 and 60 cm respectively. Assuming the load distribution to be uniform, calculate the corn pressional strain of each column.
Solution:
Load on each column, F = \(\frac{50,000}{4}\) kgwt
= \(\frac{50,000 \times 9.8}{4}\) N
A = π(r22 – r12) = \(\frac{22}{7}\)(0.60)2 – (0.30)2]
= \(\frac{22}{7}\) 0.27 m2
Compression strain = \(\frac{\frac{F}{A}}{y}=\frac{F}{A y}\)
= \(\frac{50,000 \times 9.8}{4 \times\left(\frac{22}{7} \times 0.27\right) \times 2.0 \times 10^{11}}\)
= 7.21 × 10-7.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 8.
A piece of copper having a rectangular cross-section of 15.2 mm × 19.1 mm is pulled in tension with 44,500 N force, producing only elastic deformation. Calculate the resulting strain?
Solution:
Here, A = 15.2 × 19.2 × 10-6 m2, F = 44,
500 N, η = 42 × 109 Nm-2
Strain = \(\frac{\text { Stress }}{\text { Modulus of elasticity }}\)
= \(\frac{\frac{F}{A}}{\eta}=\frac{F}{A \eta}=\frac{44500}{\left(15.2 \times 19.2 \times 10^{-6}\right) \times 42 \times 10^9}\)
= 3.65 × 10-3.

Question 9.
A steel cable with a radius of 1.5 cm supports a chairlift at a ski area. If the maximum stress Is not to exceed 108 N m-2, what is the maximum load the cable can support ?
Solution:
Maximum load macimum stress × area of cross-section
= 108πr2
= 108 × \(\frac{22}{7}\) × (1.5 × 10-2)2
= 7.07 × 104 N.

Question 10.
A rigid bar of mass 15 kg is supported symmetrically by three wires each 2.0 m long. Those at each end are of copper and the middle one is of iron. Determine the ratios of their diameters if each is to have the same tension.
Solution:
As each wire has same tension F, so each wire has same extansion due to mass of rigid bar. As each wire is of same length, hence each wire has same strain, if D is the diameter of wire, then
y = \(\frac{4 \mathrm{~F} / \pi \mathrm{D}^2}{\text { Strain }}\) or D2 ∝ 1/y
\(\frac{D_{\mathrm{cu}}}{\mathrm{D}_{\mathrm{iron}}}=\sqrt{\frac{\mathrm{y}_{\mathrm{iron}}}{\mathrm{y}_{\mathrm{cu}}}}\)
= \(\sqrt{\frac{190 \times 10^9}{110 \times 10^9}}=\sqrt{\frac{19}{11}}\) = 1.31.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 11.
A 14.5 kg mass, fastened to the end of a steel wire of unstretched length 1.0 m, is whirled in a vertical circle with an angular velocity of 2 rev/s at the bottom of the circle. The cross-sectional area of the wire is 0.065 cm2. Calculate the elongation of the wire when the mass is at the lowest point of its path.
Solution:
Here, m = 14.5 kg, l = r = 1m, v = 2 rps, A = 0.065 × 10-4 m2
Total pulling force on mass, when it is at the lowest position of the vertical circle is
F = mg + mrω2
= mg + mr4πv2
= 14.5 × 9.8 + 14.5 × 1 × 4 × (\(\frac{22}{7}\))2 × 22
= 142.1 +2291.6
= 2433.7 N
y = \(\frac{F}{A} \times \frac{l}{\Delta l}\) or ∆l = \(\frac{F l}{A y}\)
= \(\frac{2433.7 \times 1}{\left(0.065 \times 10^{-4}\right) \times\left(2 \times 10^{11}\right)}\)
= 1.87 × 10-3 m
= 1.87 mm.

Question 12.
Compute the bulk modulus of water from the following data : Initial volume = 100.0 litre, Pressure increase = 100.0 atm (1 atm = 1.013 × 105 Pa), Final volume = 100.5 litre. Compare the bulk modulus of water with that of air (at constant temperature). Explain in simple terms why the ratio is so large.
Solution:
Here, V = 100 lit = 100 × 10-3 m3, P = 100 atm = 100 × 1.013 × 105 Pa
V + ∆V = 100.5 litre or ∆V= (V + ∆V) – V
= 100.5 – 100
= 0.5 litre = 0.5 × 10-3 m3
We known that bulk modulus, B = \(\frac{\mathrm{PV}}{\Delta \mathrm{V}}\)
= \(\frac{100 \times 1.013 \times 10^5 \times 100 \times 10^{-3}}{0.5 \times 10^{-3}}\)
= 2.026 × 109 Pa
Bulk modulus of air = 1.0 × 105 Pa
\(\frac{\text { Bulk modulus of water }}{\text { Bulk modulus of air }}=\frac{2.026 \times 10^9}{1.0 \times 10^5}\)
= 2.026 × 1014.
It is so because gases are much more compressible than those of liquids. The molecules in gases are very poorly coupled to their neighbours as compared to those of gases.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 13.
What is the density of water at a depth where pressure is 80.0 atm, given that its density at the surface is 1.03 × 103 kg m-3 ?
Solution:
Here, P = 80.0 atm = 80.0 × 1.013 × 105 pa,
compressibility = \(\left(\frac{1}{B}\right)\) = 45.8 × 10-11 pa-1
Density of water at surface,
ρ = 1.03 × 103 kg m-3
Let p be the density of water at the given depth, if v and v’ are volumes of certain mass M of ocean water at surface and at a given
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 14
Putting this value in (i) we get
1 – \(\frac{1.03 \times 10^3}{\rho^{\prime}}\) = 3.712 × 10-3 or
ρ’ = \(\frac{1.03 \times 10^3}{1-3.712 \times 10^{-3}}\) = 1.034 × 103 kg m-3.

Question 14.
Compute the fractional change in volume of a glass slab, when subjected to a hydraulic pressure of 10 atm.
Solution:
Here, P = 10 atm = 10 × 1.013 × 105 pa,
B = 37 × 109 Nm-2
Volumetric strain = \(\frac{\Delta V}{V}=\frac{P}{B}\)
= \(\frac{10 \times 1.013 \times 10^5}{37 \times 10^9}\) = 2.74 × 10-5
∴ Fractional change in volume = \(\frac{\Delta V}{V}\)
= 2.74 × 10-5

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 15.
Determine the volume contraction of a solid copper cube, 10 cm on an edge, when subjected to a hydraulic pressure of 7.0 × 106 Pa.
Solution:
Here, L = 10 cm = 0.10m; P = 7 × 106 pa B = 140 Gpa = 140 × 109 pa
As B = \(\frac{\mathrm{PV}}{\Delta \mathrm{V}}=\frac{\mathrm{Pl}^3}{\Delta \mathrm{V}}\) or ∆V = \(\frac{\mathrm{Pl}^3}{\mathrm{~B}}\)
= \(\frac{\left(7 \times 10^6\right) \times(0.10)^3}{140 \times 10^9}\) = 5 × 10-8 m3
= 5 × 10-2 mm3

Question 16.
How much should be pressure on a litre of water be changed to compress it by 0.10% ?
Solution:
Here, V = 1 litre = 10-3m3;
∆V/V = 0,10/100 = 10-3
B = \(\frac{P V}{\Delta V}\) or P = B \(\frac{\Delta V}{V}\)
= (2.2 × 109) × 10-3 = 2.2 × 106pa

Question 17.
Anvils made of single crystals of diamond, with the shape as shown in Fig. are used to investigate behaviour of materials under very high pressures. Flat faces at the narrow end of the anvil have a diameter of 0.50 mm, and the wide ends are subjected to a compressional force of 50,000 N. What is the pressure at the tip of the anvil ?
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 15
Solution:
Here, D = 0.5 mm = 0.5 × 10-3m = 5 × 10-4m
F = 50,000 N = 5 × 104N
Pressure at the tip of anvil.
P = \(\frac{F}{\pi D^2 / 4}=\frac{4 F}{\pi D^2}\)
P = \(\frac{4 \times\left(5 \times 10^4\right)}{(22 / 7) \times\left(5 \times 10^{-4}\right)^2}\) = 2.5 × 1011pa.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 18.
A rod of length 1.05 m having negligible mass is supported at its end by two wires of steel (wire A) and aluminium (wire B) of equal lengths as shown in Fig. The cross-sectional areas of wires A and B are 1.0 mm2 and 2.0 mm2, respectively. At what point along the rod should a mass m be suspended in order to produce (a) equal stresses and (b) equal strains in both steel and aluminium wires.
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 16
Solution:
For Steel wire A, l1 = l, A1 = 1 mm2
Y1 = 2 × 1011Nm-2
For aluminium wire B, l2 = l;
A2 = 2mm2; y2 = 7 × 1010 Nm-2
a) Let mass m be suspended from the rod at the distance × from the end where wires A is connected. Let F1 and F2 be the tension in two wires and there is equal stress in two wires, then
\(\frac{F_1}{A_1}=\frac{F_2}{A_2} \text { or } \frac{F_1}{F_2}=\frac{A_1}{A_2}=\frac{1}{2}\) …………………. (i)
Taking moment of forces about the point of suspension of mass from the rod, we have
F1x = F2 (1.05 – x) or \(\frac{1.05-x}{x}=\frac{F_1}{F_2}=\frac{1}{2}\)
or 2.10 – 2x = x or x = 0.70m = 70 cm

b) Let mass m be supended from the rod at distance × from the end where wire A is connected. Let F1 and F2 be the tension in the wires and there is equal strain in the two wires i.e.
\(\frac{F_1}{A_1 Y_1}=\frac{F_2}{A_2 Y_2}\) or \(\frac{F_1}{F_2}=\frac{A_1}{A_2} \frac{Y_1}{Y_2}\)
= \(\frac{1}{2} \times \frac{2 \times 10^{11}}{7 \times 10^{10}}=\frac{10}{7}\)
As the rod is stationary, so F1x = F2(1.05 – x)
or \(\frac{1.05-x}{x}=\frac{F_1}{F_2}=\frac{10}{7}\)
or 10 x = 7.35 – 7x
or x = 0.4324 m
x = 43.2cm.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 19.
A mild steel wire of length 1.0 m and cross-sectional area 0.50 × 10-2 cm2 is stretched, well within its elastic limit, horizontally between two pillars. A mass of 100 g is suspended from the mid-point of the wire. Calculate the depression at the- mid-point.
Solution:
Refer the figure, let x be the depression at the mid point i.e CD = x
In fig. AC = CB = Z = 0.5m
m = 100g = 0.100 kg
AD = BD = (l2 + x2)1/2
Increase in length, ∆l = AD + DB – AB
= 2 AD – AB
= 2 (l2 + x2)1/2 – 2l
= 2l(1 + \(\frac{x^2}{l^2}\))1/2 – 2l
= 2l (1 + \(\frac{x^2}{2 l^2}\)) – 2l = \(\frac{x^2}{l}\)
Strain = \(\frac{\Delta l}{2 l}=\frac{x^2}{2 l^2}\)
If T is the tension in the wire, then 2T cos θ
= mg or T = \(\frac{\mathrm{mg}}{2 \cos \theta}\)
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 17
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 18

Question 20.
Two strips of metal are riveted together at their ends by four rivets, each of diameter 6.0 mm. What is the maximum tension that can be exerted by the riveted strip if the shearing stress on the rivet is not to exceed 6.9 × 107 Pa ? Assume that each rivet is to carry one quarter of the load.
Solution:
Here, r = 6/2 = 3mm = 3 × 10-3 m, max.
stress = 6.9 × 107 Pa
Max . load on a rivet = Max stress × area of cross section
= 6.9 × 107 × (22/7) × (3 × 10-3)2
∴ Maximum tension
= 4 (6.9 × 107 × \(\frac{22}{7}\) × 9 × 10-6)
= 7.8 × 103N.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 21.
The Marina trench is located in the Pacific Ocean, and at one place it is nearly eleven km beneath the surface of water. The water pressure at the bottom of the trench is about 1.1 × 108 Pa. A steel ball of initial volume 0.32 m3 is dropped into the ocean and falls to the bottom of the trench. What is the change in the volume of the ball when it reaches to the bottom ?
Solution:
Here, P = 1.1 × 108 Pa, V = 0.32 m3,
B = 16 × 1011Pa
∆V = \(\frac{\mathrm{PV}}{\mathrm{B}}\)
= \(\frac{\left(1.1 \times 10^8\right) \times 0.32}{1.6 \times 10^{11}}\)
= 2.2 × 10-4m3

Textual Examples

Question 1.
A structural steel rod has a radius of 10 mm and a length of 10 m. A 100 KN force stretches it along its length. Calculate (a) stress, (b) elongation, and (c) strain on the rod. Young’s modulus, of structural steel ¡s 2.0 × 1011 Nm2.
Answer:
a) Given Stress = \(\frac{F}{A}=\frac{F}{\pi r^2}\)
= \(\frac{100 \times 10^3 \mathrm{~N}}{3.14 \times\left(10^{-2} \mathrm{~m}\right)^2}\) = 3.18 × 108 Nm-2

b) The elongation
∆L = \(\frac{(\mathrm{F} / \mathrm{A}) \mathrm{L}}{\mathrm{Y}}\)
= \(\frac{\left(3.18 \times 10^8 \mathrm{Nm}^2\right)(1 \mathrm{~m})}{2 \times 10^{11} \mathrm{Nm}^{-2}}\)
= 1.59 × 10-3 m
= 1.59 mm

c) The strain is given by
Strain = ∆L/L = (1.59 × 10-3) km
= 1.59 × 10-3 = 0.16%

Question 2.
A copper wire of length 2.2 m and a steel wire of length 1.6 m, both of diameter 3.0 mm, are connected end to end. When stretched by a load, the net elongation is found to be 0.70 mm. Obtain the load applied.
Answer:
From y = \(\frac{\sigma}{\varepsilon}\)
we have stress = strain × Young’s modulus.
W/A = Yc × (∆Lc/Lc) = Ys × (∆Ls/Ls)
where the subscripts c and s refer to copper and stainless steel respectively,
∆Lc/∆Ls = (Ys/Ys) () (Lc/Ls)
Given Lc = 2.2 m, Ls = 1.6 m,
Yc = 1.1 × 1011 N.m-2 and Ys = 2.0 × 1011 N.m-2.
∆Lc/∆Ls = \(\frac{2.0 \times 10^{11}}{1.1 \times 10^{11}}=\frac{2.2}{1.6}\) = 2.5
∆Lc + ∆Ls = 7.0 × 10-4 m
Solving the above equations,
∆Lc = 5.0 × 10-4 m and ∆Ls = 2.0 × 10-4 m.
∴ W = (A × Yc × ∆Lc)Lc
= π(1.5 × 10-3)2 × \(\left[\frac{\left(5.0 \times 10^{-4} \times 1.1 \times 10^{11}\right)}{2.2}\right]\) = 1.8 × 102 N.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 3.
In a human pyramid in a circus, the entire weight of the balanced group is supported by the legs of a performer who is lying on his back (as shown in Fig.) The combined mass of all the persons performing the act and the tables, planks etc. involved is 280 kg. The mass of the performer lying on his back at the bottom of the pyramid is 60 kg. Each thighbone (femur) of this performer has a length of 50 cm and an effective radius of 2.0 cm. Determine the amount by which each thighbone gets compressed under the extra load.
AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids 19
Answer:
Total mass of all the performers, tables, plaques = 280 kg
Mass of the performer = 60 kg
Mass supported by the legs of the performer at the bottom of the pyramid = 280 – 60
= 220 kg
Weight of this supported mass = 220 kg wt.
= 220 × 9.8 N = 2156 N
Weight supported by each thighbone of the performer = \(\frac{1}{2}\) (2156) N = 1078 N.
The Young’s modulus for bone is Y = 9.4 × 109 Nm-2 (compressive)
Length of each thighbone L = 0.5 m the radius of thigbone = 2.0 cm
Thus the cross-sectional area of the thighbone
A = π × (2 × 10-2)2 m2
= 1.26 × 10-3 m2
Using \(\frac{(F \times L)}{(A \times \Delta L)}\) the compression in each thigbone (∆L) can be computed as
∆L = \(\frac{F \times L}{Y \times A}\)
= [(1078 × 0.5)/(9.4 9 × 109 × 1.26 × 10-3)]
= 4.55 × 10-5 m or 4.55 × 10-3 cm.
This is a very small change ! The fractional decrease in the thighbone is ∆L/L = 0.000091 or 0.0091%.

Question 4.
A square slab of side 50 cm and thickness 10 cm is subject to a shearing force (on its narrow face) of 9.0 × 104 N. The lower edge is riveted to the floor. How much will the upper edge be displaced ?
Answer:
The area (A) = 50 cm × 10 cm
= 0.5 m × 0.1 m
= 0.05 m2
Therefore, the stress appIid is
= (9.4 × 104N/0.05 m2)
= 1.80 × 106 N.m2
We know that shearing strain = (∆x/L)
= Stress/G.
Therefore the displacement
∆x = (Stress × L)/G = \(\frac{\left(1.8 \times 10^6 \mathrm{Nm}^{-2} \times 0.5 \mathrm{~m}\right)}{5.6 \times 10^9 \mathrm{Nm}^{-2}}\)
= 1.6 × 10-4 m = 0.16 mm.

AP Inter 1st Year Physics Study Material Chapter 10 Mechanical Properties of Solids

Question 5.
The average depth of Indian Ocean is about 3000 m. Calculate the fractional compression. ∆V/V, of water at the bottom of the ocean, given that the bulk modulus of water is 2.2 × 109 Nm-2. (Take g = 10 ms-2)
Answer:
The pressure exerted by a 3000 m column of water on the bottom layer
ρ = hρg
= 3000 m × 1000 kg m-3× 10 ms-2
= 3 × 107 Nm-2
Fractional compression ∆V/V, is
∆V/V = stress \(\frac{\left(3 \times 10^7 \mathrm{Nm}^{-2}\right)}{2.2 \times 109 \mathrm{Nm}^{-2}}\)
= 1.36 × 10-2 or 1.36%

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Andhra Pradesh BIEAP AP Inter 1st Year Physics Study Material 9th Lesson Gravitation Textbook Questions and Answers.

AP Inter 1st Year Physics Study Material 9th Lesson Gravitation

Very Short Answer Questions

Question 1.
State the unit and dimension of the universal gravitational constant (G).
Answer:
F = \(\frac{\mathrm{Gm}_1 \mathrm{~m}_2}{\mathrm{~d}^2}\)
units of G = Nm2 Kg-2
dimensional formula of G = \(\frac{\left[\mathrm{MLT}^{-2}\right]\left[\mathrm{L}^2\right]}{[\mathrm{M}][\mathrm{M}]}\) = [M-1 L3 T-2]

Question 2.
State the vector form of Newtons’s law of gravitation.
Answer:
Vector form of Newton’s law of gravitation is
F = \(\frac{-G m_1 m_2}{r^3} \hat{r}\) where \(\hat{r}\) is unit vector.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 3.
If the gravitational force of Earth on the Moon is F, what is the gravitational force of moon on earth ? Do these forces to attraction-reaction pair ?
Answer:
F. Yes, they form action and reaction pair.

Question 4.
What would be the change in acceleration due to gravity (g) at the surface, if the radius of Earth decreases by 2% keeping the mass of Earth constant ?
Answer:
g1r12, l = g2r22, r2 = \(\frac{98}{100}\) r1
\(\frac{g_2}{g_1}=\frac{r_1^2}{r_2^2}=\frac{r_1^2}{\left(\frac{98}{100}\right) r_1^2}=\frac{100 \times 100}{98 \times 98}\)
\(\frac{g_2}{g_1}\) = 1.04
\(\frac{g_2}{g_1}\) – 1 = 1.04 – 1
\(\frac{g_2-g_1}{g_1}\) = 0.04

Question 5.
As we go from one planet to another, how will
a) the mass and
b) the weight of a body change ?
Answer:
a) The mass remains constant.
b) The weight (w = mg), changes from one planet to another planet.

Question 6.
Keeping the length of a simple pendulum constant, will the time period be the same on all planets ? Support your answer with reason.
Answer:
No, Time period depends on acceleration due to gravity (g).
T = 2π \(\sqrt{\frac{l}{g}}\)
g value varies from planet to planet. So time period changes.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 7.
Give the equation for the value of g at a depth ‘d’ from the surface of Earth. What is the value of ‘g’ at the centre of Earth ?
Answer:

  1. gd = g(1 – \(\frac{\mathrm{d}}{\mathrm{R}}\)) where d = Depth
    R = Radius of the Earth
  2. At the centre of the Earth g = 0.

Question 8.
What are the factors that make ‘g’ the least at the equator and maximum at the poles ? > .
Answer:

  1. g value is maximum at poles due to
    a) Rotation of the Earth
    b) Earth is flattened at the poles
    c) The equatorial radius is less at the poles.
  2. g value minimum at equator due to
    a) Rotation of the earth
    b) Bulging near the equator.

Question 9.
“Hydrogen is in abundance around the sun but not around Earth”. Explain.
Answer:
The escape velocity on the sun is 620 km/s and escape velocity on the Earth is 11.2 km/s. The r.m.s velocities of hydrogen (2 km/s) is less than escape velocity on the Sun. So hydrogen is more abundant around the Sun and less around the Earth.

Question 10.
What is the time period of revolution of a geostationary satellite ? Does it rorate from West to East or from East to West ?
Answer:
Time period of geo-stationary satellite is 24 hours. It can rotate from west to east.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 11.
What are polar satellites ?
Answer:
Polar satellites are low altitude satellites (500 to 800 km), but they go around the poles of the earth in a north-south direction. Its time period is around 100 minutes.

Short Answer Questions

Question 1.
State Kepler’s laws of planetary motion.
Answer:
The three laws of Kepler can be stated as follows.

  1. Law of orbits : All planets move in elliptical orbits with the sun situated at one of the foci.
    AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 1
  2. Law of areas : The line that joins any planet to the sun sweeps equal areas in equal intervals of time.
  3. Law of periods : The square of the time period of revolution of a planet is proportional to the cube of the semi-major axis of the ellipse traced out by the planet.
    T2 ∝ R3

Question 2.
Derive the relation between acceleration due to gravity (g) at the surface of a planet and Gravitational constant (G).
Answer:
Consider a body of mass m on the surface of the planet. Let R be the radius of the Earth and M be the mass of the Earth.
Force acting on the body due to gravitational pull of the planet is
F = m g → (1)
According to Newton’s gravitational law, Force on the body is F = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\) → (2)
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 2
From eq’s (1) and (2), we have
m g = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\)
g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\)
This is the relation between g and G
Mass of the earth (M) = Volume × density of the earth
M = \(\frac{4}{3}\) π R2 × ρ
g = \(\frac{4}{3}\) π G R ρ

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 3.
How does the acceleration due to gravity (g) change for the same values of height(h) and depth (d).
Answer:
a) gh = g(1 – \(\frac{2 \mathrm{~h}}{\mathrm{R}}\)), gd = g(1 – \(\frac{\mathrm{d}}{\mathrm{R}}\))
Same values of height and depth, h = d
gh = g (1 – \(\frac{2 \mathrm{~d}}{\mathrm{R}}\)) and gd = g(1 – \(\frac{\mathrm{d}}{\mathrm{R}}\))
∴ gd > gh

b) For large height and large depth
gh = \(\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^2}\) and gd = g(1 – \(\frac{\mathrm{d}}{\mathrm{R}}\))
If h = d = R
gh = \(\frac{\mathrm{g}}{\left(1+\frac{\mathrm{R}}{\mathrm{R}}\right)^2}\) and gd = g(1 – \(\frac{\mathrm{R}}{\mathrm{R}}\)) = 0
∴ gh > gd

Question 4.
What is orbital velocity ? Obtain an expression for it. [Mar. 14]
Answer:
Orbital velocity (V0) : The horizontal velocity required for an object to revolve around a planet in a circular orbit is called orbital velocity.

Expression for orbital velocity :
Consider a body (satellite) of mass m, revolves round the earth in a circular orbit. Let h be the height of the satellite from the surface of the earth. Then (R + h) is the radius of the orbit.
The Gravitational force of attraction of the earth on the body is given by F = \(\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})^2}\) ………….. (1)
Where M = Mass of the earth, R = Radius of the earth, G = universal gravitational constant. If V0 is the orbital velocity of the body.
The centripetal force on the body is given by F = \(\frac{\mathrm{mv}_{\mathrm{o}}^2}{(\mathrm{R}+\mathrm{h})}\) …………… (2)
In order to make the body revolve in the same orbit, its centripetal force must be equal to the gravitational force
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 3

Question 5.
What is escape velocity ? Obtain an expression for it.
Answer:
Escape velocity : It is the minimum velocity with which a body should be projected, so that it moves into the space by overcoming the earth’s gravitational field.

Expression for escape velocity :
Consider a body of mass m thrown with a velocity v2
Then K.E = \(\frac{1}{2}\) m ve2 …………. (1)
The gravitational force of attraction of the earth of mass M and Radius R on a body of mass m at its surface is F = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\) ……………… (2)
Gravitational P. E. = work done on the body
∴ P. E. = F × R = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\) × R
P.E. = \(\frac{\mathrm{GMm}}{\mathrm{R}}\) …………….. (3)
A body just escapes when its K. E. = P. E
\(\frac{1}{2}\) m ve2 = \(\frac{\mathrm{GMm}}{\mathrm{R}^2}\)
ve2 = \(\frac{2 \mathrm{GM}}{\mathrm{R}}\) (∵ g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\))
ve = \(\sqrt{\frac{2 \mathrm{GM}}{\mathrm{R}}}\)
ve = \(\sqrt{2 g R}\) (gR = \(\frac{\mathrm{GM}}{\mathrm{R}}\))
ve = \(\sqrt{2} \times \sqrt{g R}\) (∵ v0 = \(\sqrt{g R}\))
ve = \(\sqrt{2}\) × v0
∴ Escape velocity is \(\sqrt{2}\) times the orbital velocity.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 6.
What is a geostationary satellite ? State its uses. [T.S. Mar. 18, 15; A.P. Mar. 16]
Answer:
Geo-stationary satellite : If the period of revolution of an artificial satellite is equal to the period of rotation of earth, then such a satellite is called geo-stationary satellite.
Time period of geo-stationary satellite is 24 hours.
Uses :

  1. Study the upper layers of atmosphere
  2. Forecast the changes in atmosphere
  3. Know the shape and size of the earth.
  4. Identify the minerals and natural resources present inside and on the surface of the earth.
  5. Transmit the T. V. programmes to distant objects
  6. Under take space research i.e. to know about the planets, satellites, comets etc.

Question 7.
If two places are at the same height from the mean sea level; One is a mountain and other is in air at which place will ‘g’ be greater ? State the reason for your answer.
Answer:
The acceleration due to gravity on mountain is greater than that of air.
g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\) ………….. (1)
Mass (M) = volume × density (ρ)
M = \(\frac{4}{3}\)π R3 × ρ
g = \(\frac{\mathrm{G}}{\mathrm{R}^2}\) × \(\frac{4}{3}\) π R3 ρ
g = – \(\frac{4}{3}\) π R G ρ …………….. (2)
g ∝ ρ
So density is more at mountains. So g is more on mountain.

Question 8.
The weight of an object is more at the poles than at the equator. At which of these can we get more sugar for the same weight ? State the reason for your answer.
Answer:
Weight of the object at poles = mp gp (∵ w = mg)
Weight of the object at equator = me ge
Given weight of the object at poles > weight of the object at equator
mp gp > mege
We know that gp > ge
Then mp < me
Hence we can get more sugar at equator.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 9.
If a nut becomes loose and gets detached form a satellite revolving around the earth, will it fall down to earth or will it revolve around earth ? Give reasons for your answer.
Answer:
When a nut is detached from a satellite revolving around the earth, the nut is also moving with the speed of the satellite as the orbit of a satellite does not depend upon its mass. Hence nut is moving in the same orbit under centripetal force.

Question 10.
An object projected with a velocity greater than or equal to 11.2 kms it will not return to earth. Explain the reason.
Answer:
The escape velocity on the surface of the earth (ve) = 11.2 km/s. Any object projected with the velocity greater then (or) equal to 11.2 km/s it will not come back. Because it has overcome the earth’s gravitational pull.
So an object never come back to earth.

Long Answer Questions

Question 1.
Define gravitational potential energy and derive an expression for it associated with two particles of masses m1 and m2.
Answer:
Gravitational potential energy : Gravitational potential energy of a body at a point in a gravitational field of another body is defined as the amount of work done in brining the given body from infinity to that point without acceleration.

Expression for gravitational potential energy : Consider a gravitational field due to earth of mass M, radius R. The mass of the earth can be supposed to be concentrated at its centre 0. Let us calculate the gravitational the potential energy of the body of mass m placed at point p in the gravitational field, where OP = r and r > R. Let OA = x and AB = dx.
The gravitational force on the body at A will be
F = \(\frac{\mathrm{GMm}}{\mathrm{X}^2}\) ……………… (1)
Small amount of work done in bringing the body without acceleration through a small distance dx is given by
dw = Force × displacement
dw = F × dx
dw = \(\frac{\mathrm{GMm}}{\mathrm{X}^2}\) × dx ……………… (2)
Total work done in bringing the body from infinity to point P is given by
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 4
This work done is stored in the body as its gravitational potential energy (u)
∴ Gravitational potential energy (u) = \(\frac{\mathrm{GMm}}{\mathrm{r}}\) ……………….. (4)
Gravitational potential energy associated with two particles of masses m, and m2 separated by a distance r is given by
u = –\(\frac{G m_1 m_2}{r}\) ……………….. (5) (if we choose u = 0 as r → ∞).

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 2.
Derive an expression for the variation of acceleration due to gravity (a) above and (b) below the surface of the Earth.
Answer:
i) Variation of g with height:
When an object is on the surface of the earth, it will be at a distance r = R radius of the earth, then we have g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\)
Where G = universal gravitational constant, M = Mass of the earth
When the object is at a height h above the surface of the earth, Then r = R + h
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 5
g value decreases with altitude.

ii) Variation of g with depth :
Let us assume that the earth to be a homogeneous uniform sphere of radius R, mass M and of uniform density ρ.
We know that g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\) = \(\frac{4}{3}\) π ρ G R ………………… (1)
Consider a body of mass m be placed at a depth d.
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 6
The value of g decreases with depth.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 3.
State Newton’s Universal Law of gravitation. Explain how the value of the Gravitational constant (G) can be determined by Cavendish method.
Answer:
Newton’s law of gravitation :
“Every body in the universe attracts every other body with a force which is directly proportional to the product of their masses and inversly proportional to the square of the distance between them”
Determination of G value by cavendish method :
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 7

  1. In 1798 Henry Cavendish determined the value of G experimentally.
  2. The bar AB has two small lead spheres attached at its ends.
  3. The bar is suspended from a rigid support by a fine wire.
  4. Two large lead spheres are brought close to the small ones but on opposite sides as shown in figure.
  5. The big spheres attract the nearby small ones by equal and opposite force as shown in figurer.
  6. There is no net force on the bar but only a torque which is clearly equal to F times the length of the bar. When F is the force of attraction between a big sphere and its neighbouring small sphere.
  7. Due to this torque, the suspended wire gets twisted till such time as the restoring torque of the wire equals the gravitational torque.
    Restoring torque = τ θ ………………… (1)
    Where τ is restoring couple per unit twist 0 is the angle
  8. If d is the seperation between big and small balls having masses M and m.
    Gravitational force (F) = \(\frac{\mathrm{GMm}}{\mathrm{d}^2}\) ……………… (2)
    ix) If L is the length of the bar A B, then the torque arising out of F is F multiplied by L. At equilibrium, this is equal to the restoring torque.
    \(\frac{\mathrm{GMm}}{\mathrm{d}^2}\) = τ θ
    observations of θ thus enables one to calculate G.
    The measurement of G = 6.67 × 10-11 Nm2/ Kg2

Problems

(Gravitational Constant ‘G’ = 6.67 × 10-11 Nm2/ Kg-2; Radius of earth ‘R’ = 6400 km; Mass of earth ‘ME’ = 6 × 1024 kg)

Question 1.
Two spherical balls each of mass 1 kg are placed 1 cm apart. Find the gravitational force of attraction between them.
Solution:
m1 = m2 = 1 kg, d = 1 cm = 1 × 10-2 m
F = \(\frac{\mathrm{Gm}_1 \mathrm{~m}_2}{\mathrm{~d}^2}\)
F = \(\frac{6.67 \times 10^{-11} \times 1 \times 1}{\left(1 \times 10^{-2}\right)^2}\) = 6.67 × 10-7N

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 2.
The mass of a ball is four times the mass of another ball. When these balls are separated by a distance of 10 cm, the force of gravitation between them is 6.67 × 10-7 N. Find the masses of the two balls.
Solution:
m1 = m, m2 = 4m, d = 10 cm = 10 × 10-2 m,
F = 6.67 × 10-7 N
G = 6.67 × 10-11 Nm2/kg 2
F = \(\frac{\mathrm{Gm}_1 \mathrm{~m}_2}{\mathrm{~d}^2}\)
6.67 × 10-7 = \(\frac{6.67 \times 10^{-11} \times \mathrm{m} \times 4 \mathrm{~m}}{\left(10 \times 10^{-2}\right)^2}\)
4 m2 = 102
m2 = \(\frac{100}{4}\) = 25
m = 5 kg
∴ m1 = m = 5 kg
m2 = 4m = 4 × 5 = 20 kg

Question 3.
Three spherical balls of masses 1 kg, 2kg and 3 kg are placed at the corners of an equilateral triangle of side 1 m. Find the magnitude of gravitational force exerted by the 2 kg and 3kg masses on the 1 kg mass.
Solution:
The force of attraction at 2 kg on the 1 kg particle
F2 = \(\frac{\mathrm{Gmn}{\mathrm{~d}^2}\) = \(\frac{\mathrm{G} \times 1 \times 2}{1^2}\)
F2 = 2 G
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 8

Question 4.
At a certain height above the earth’s surface, the acceleration due to gravity is 4% of its value at the surface of earth. Determine the height.
Solution:
gh = 4% of g = \(\frac{4}{100}\)g, R = 6400 km
gh = \(\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^2}\)
\(\frac{4 \mathrm{~g}}{100}=\frac{\mathrm{g}}{\left(1+\frac{\mathrm{h}}{\mathrm{R}}\right)^2}\)
\(\left(1+\frac{h}{R}\right)^2=\frac{100}{4}\) = 25
1 + \(\frac{h}{R}\) = 5
\(\frac{h}{R}\) = 4
h = 4 × R = 4 × 6400 = 25,600 km.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 5.
A satellite is orbiting the earth at a height of 1000km. Find its orbital speed.
Solution:
h = 1000 km
Oribital velocity (v0) = \(\sqrt{\frac{\mathrm{GM}}{\mathrm{R}+\mathrm{h}}}\)
G = 6.67 × 10-11 Nm2/kg 2, M = 6 × 1024 kg
R + h = 6400 + 1000 = 7400 km
= 7400 × 103m
v0 = \(\sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{7400 \times 10^3}}\)
v0 = \(\sqrt{0.5408 \times 10^{10}}\) = 73.54 × 103 m/s
v0 = 7.354km/s

Question 6.
A satellite orbits the earth at a height equal to the radius of earth. Find it’s
(i) orbital speed and
(ii) Period of revolution
Solution:
Height h = R
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 11

Question 7.
The gravitational force of attraction between two objects decreases by 36% when the distance between them is increased by 4 m. Find the original distance between them.
Solution:
F1 = F, F2 = \(\frac{64}{100}\) F
d1 = d, d2 = (d + 4) m
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 12
5d = 4d + 16
d = 16 m.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 8.
Four identical masses of m are kept at the corners of a square of side a. Find the gravitational force exerted on one of the masses by the other masses.
Solution:
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 13

Question 9.
Two spherical balls of 1 kg and 4kg are separated by a distance of 12 cm. Find the distance of a point from the 1 kg mass at which the gravitational force on any mass becomes zero.
Solution:
m1 = 1 kg, m2 = 4kg, r = 12 cm
∴ x = \(\frac{r}{\sqrt{\frac{m_2}{m_1}}+1}\) from m1
= \(\frac{12}{\sqrt{\frac{4}{1}}+1}=\frac{12}{2+1}=\frac{12}{3}\) = 4 cm
At x = 4 cm the gravitational force is zero.

Question 10.
Three uniform spheres each of mass m and radius R are kept in such a way that each touches the other two. Find the magnitude of the gravitational force on any one of the spheres due to the other two.
Solution:
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 9

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 11.
Two satellites are revolving round the earth at different heights. The ratio of their orbital speeds ¡s 2 : 1. If one of them is at a height of 100 km, what is the height of the other satellite ?
Solution:
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 10
4R + 400 = R + h2
h2 = 3R + 400 = 3 × 6400 + 400
= 19200 + 400
h2 = 19,600 km.

Question 12.
A satellite is revolving round in a circular orbit with a speed of 8 km s-1 at a height where the value of acceleration due to gravity is 8 m s-2. How high is the satellite from the Earth’s surface ? (Radius of planet = 6000 km)
Solution:
v0 = 8 km/s = 8000 m/s
gh = 8 m/s2, R = 6000 km = 6000 × 103 m
∴ v0 = \(\sqrt{\frac{G M}{R+h}}=\sqrt{g(R+h)}\)
v02 = g(R + h)
(8000)2 = 8(6000 × 103 + h)
6000 × 103 + h = 8 × 106
h = (8 – 6) 106
h = 2 × 106m
h = 2000 × 103 = 2000 km.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 13.
(a) Calculate the escape velocity of a body from the Earth’s surface, (b) If. the Earth were made of wood, its mass would be 10% of its current mass. What would be the escape velocity, if the Earth were made of wood ?
Solution:
R = 6400 × 103m,
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 14

Additional Problems

Question 1.
Answer the following :
a) You can shield a charge from electrical forces by putting it inside a hollow conductor. Can you shield a body from the gravitational influence of nearby matter by putting it inside a hollow sphere or by some other means ?
b) An astronaut inside a small space ship orbiting around the earth cannot detect gravity. If the space station orbiting around the earth has a large size, can he hope to detect gravity ?
c) If you compare the gravitational force on the earth due to the sun to that due to the moon, you would find that the Sun’s pull is greater than the moon’s pull, (you can check this yourself using the data available in the succeeding exercises). However, the tidal effect of the moon’s pull is greater than the tidal effect of sun. Why ?
Solution:
a) We cannot shield a body from the gravitational influence of nearby matter because the gravitational force on the body due to near by matter is independent of the presence of other matter, whereas it is not so in the case of electrical forces it means the gravitational screens are not possible.

b) Yes, if the size of the spaceship orbiting around the earth is large enough, an astronaut inside the spaceship can detect the variation in g.

c) Tidal effect depends inversly on the cube of the distance, unlike force which depends inversly on the square of the distance. Since the distance of moon from the ocean water is very small as compared to the distance of sun from the ocean water on earth. Therefore, the tidal effect of moon’s pull is greater than the tidal effect of the sun.

Question 2.
Choose the correct alternative :
a) Acceleration due to gravity increase^ decreases with increasing altitude.
b) Acceleration due to gravity increases/decreases with increas¬ing depth (assume the earth to be a sphere of uniform density).
c) Acceleration due to gravity is independent of mass of the earth/ mass of the body.
d) The formula – G Mm (1/r2 – 1/r1) is more/less accurate than the formula mg (r2 – r1) for the difference of potential energy between two points r2 and r1 distance away from the centre of the earth.
Solution:
a) decreases
b) decreases
c) mass of the body
d) more

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 3.
Suppose there existed a planet that went around the sun twice as fast as the earth. What would be its orbital size as compared to that of the earth ?
Solution:
Here, Te = 1 year; Tp = \(\frac{T_c}{2}=\frac{1}{2}\) year; re = 1
A.U.; rp = ?
Using Kepler’s third law, we have
rp = re\(\left(\frac{T_p}{T_e}\right)^{2 / 3}\) = \(1\left(\frac{1 / 2}{1}\right)^{2 / 3}\)
= 0.63 AU

Question 4.
Io, one of the satellites of Jupiter, has an orbital period of 1.769 days and the radius of the orbit is 4.22 × 108m. Show that the mass of Jupiter is about-one-thousandth that of the sun.
Solution:
For a satellite of Jupiter, orbital period,
T1 = 1.769 days = 1.769 × 24 × 60 × 60 s
Radius of the orbit of satellite,
r1 = 4.22 × 108 m
mass of Jupiter, M1 is given by M1
= \(\frac{4 \pi^2 \times\left(4.22 \times 10^8\right)^3}{G \times(1.769 \times 24 \times 60 \times 60)^2}\)
= \(\frac{4 \pi^2 r_1^3}{\mathrm{GT}_1^2}\) ……………. (1)
We know that the orbital period of earth around the sun,
T = 1 year = 365.25 × 24 × 60 × 60 s
Oribital radius, r = 1 A.U = 1.496 × 1011 m
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 15

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 5.
Let us assume that our galaxy consists of 2.5 × 1011 stars each of one solar mass. How long will a star at a distance of 50,000ly from the galactic centre take to complete one revolution ? Take the diameter of the Milky Way to be 105 ly.
Solution:
Here, r = 50,000 ly =50,000 × 9.46 × 1015m
= 4.73 × 1020m.
M = 2.5 × 1011 solar, mass = 2.5 × 1011 × (2 × 1030) kg
= 5.0 × 1041 kg
We know that, M = \(\frac{4 \pi^2 r^3}{\mathrm{GT}^2}\)
or T = \(\left(\frac{4 \pi^2 r^3}{G M}\right)^{1 / 2}\)
= \(\left[\frac{4 \times(22 / 7)^2 \times\left(4.73 \times 10^{20}\right)^3}{\left(6.67 \times 10^{11}\right) \times\left(5.0 \times 10^{41}\right)}\right]^{1 / 2}\)
= 1.12 × 1016S.

Question 6.
Choose the correct alternative :
a) If the zero of potential energy is at infinity, the total energy of an orbiting satellite is negative of its kinetic/potentia! energy.
b) The energy required to launch an orbiting .satellite out of earth’s gravitational influence is more/less than the energy required to project a stationary object at the same height (as the satellite) out of earth’s influence.
Solution:
a) Kinetic energy
b) Less.

Question 7.
Does the escape speed of a body from the earth depend on (a) the mass of the body, (b) the Ideation from where it is projected, (c) the direction of projection, (d) the height of the location from where the body is launched ?
Solution:
The escape velocity is independent of mass of the body and the direction of projection it depends upon the gravitational potential at the point from where the body is launched. Since this potential depends slightly on the latitude and height of the point, therefore, the escape velocity depends slightly on these factors.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 8.
A comet orbits the sun in a highly elliptical orbit. Does the comet have a constant (a) linear speed, (b) angular speed, (c) angular momentum, (d) kinetic energy, (e) potential energy, (f) total energy throughout its orbit ? Neglect any mass loss of the comet when it comes very close to the Sun.
Solution:
A comet while going on elliptical orbit around the sun has constant angular momentum and total energy at all locations but other quantities vary with locations.

Question 9.
Which of the following symptoms is likely to afflict an astronaut in space
(a) swollen feet,
(b) swollen face,
(c) headache,
(d) orientational problem.
Solution:
a) We know that the legs carry the weight of the body in the normal position due to gravity pull. The astronaut in space is in weightless state. Hence, swollen feet may not affect his working.

b) In the conditions of weightless, the face of the astronaut is expected to get more supply. Due to it, the astronaut may develop swollen face. As eyes, ears, nose, mouth etc. are all embedded in the face, hence, swollen face may affect to great extent the seeing / hearing / eating / smelling capabilities of the astronaut in space.

c) Headache is due to metal strain it will persist whether a person is an astronaut in space or he is on earth it means headache will have the same effect on the astronaut in space as on a person on earth.

d) Space also has orientation. We also have the frames of reference in space. Hence, orientational problem will affect the astronaut in space.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 10.
In the following two exercises, choose the correct answer from among the given ones : The gravitational intensity at the centre of a hemispherical shell of uniform mass density has the direction indicated by the arrow (see Fig) (i) a, (ii) b, (iii) c, (iv) 0.
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 16
Solution:
We know that the gravitational potential is constant at all points upside a spherical shell. Therefore, the gravitational potential gradient at all points inside the spherical shell is zero [i.e as v is constant, \(\frac{\mathrm{dv}}{\mathrm{dr}}\) = 0].

Since gravitational intensity is equal to negative of the gravitational potential gradient, hence the gravitational intensity is zero at all points inside a hollow spherical shell. This indicates that the gravitational forces acting on a particle at any point inside a spherical shell, will be symmetrically placed. Therefore if we remove the upper hemispherical shell, the net gravitational forces acting on the particle at the centre Q or at some other point P will be acting downwards which will also be the direction of gravitational intensity it is so because, the gravitational intensity at a point is the gravitational force per unit mass at that point. Hence the gravitational intensity at the centre Q will be along c, i.e., option (iii) is correct.

Question 11.
For the above problem, the direction of the gravitational intensity at an arbitrary point P is indicated by the arrow (i) d, (ii) e, (iii) f, (iv) g. .
Solution:
As per explanation given in the answer of Q. 10, the direction of gravitational intensity at P will be along e i.e., option (ii) is correct.

Question 12.
A rocket is fired from the earth towards the sun. At what distance from the earth’s centre is the gravitational force on the rocket zero ? Mass of the sun = 2 × 1030 kg, mass of the earth 6 × 1024 kg. Neglect the effect of other planets etc. (orbital radius 1.5 × 1011 m).
Solution:
Here Ms = 2 × 1030 kg ; Mc = 6 × 1024 kg ; r = 1.5 × 1011 m .
Let x be the distance of a point from the earth where gravitational forces on the rocket due to sun and earth become equal and opposite. Then distance of rocket from the sun
= (r – x). If m is the mass of rocket then
\(\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{m}}{(\mathrm{r}-\mathrm{x})^2}=\frac{\mathrm{GM}_{\mathrm{e}} \mathrm{m}}{\mathrm{x}^2} \text { or } \frac{(\mathrm{r}-\mathrm{x})^2}{\mathrm{x}^2}=\frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{M}_{\mathrm{e}}}\)
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 17

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 13.
How will you ‘weigh the sun1, that is estimate its mass ? The mean orbital radius of the earth around the sun is 1.5 × 108 km.
Solution:
To estimate the mass of the sun, we require, the time period of revolution T of one of its planets (say the earth). Let Ms, Me be the masses of sun and earth respectively and r be the mean orbital radius of the earth around the sun. The gravitational force acting on earth due to sum is
F = \(\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}^2}\)
Let, the earth be moving in circular orbit around the sun, with a uniform angular velocity ω, the centripetal force acting on earth is.
F1 = Me2 = Mer \(\frac{4 \pi^2}{T^2}\)
As this centripetal force is provided by the gravitational pull of sun on earth, So
\(\frac{\mathrm{GM}_{\mathrm{s}} \mathrm{M}_{\mathrm{e}}}{\mathrm{r}^2}=\mathrm{M}_{\mathrm{e}} \mathrm{r} \frac{4 \pi^2}{\mathrm{~T}^2} \text { or } \mathrm{M}_{\mathrm{s}}=\frac{4 \pi^2 \mathrm{r}^3}{G \mathrm{~T}^2}\)
Knowing r and T, mass Ms of the sun can be estimated.
In this Question, we are given, r = 1.5 × 108 km
= 1.5 × 1011 m
T = 365 days = 365 × 24 × 60 × 60 s
∴ Ms = \(\frac{4 \times(22 / 7)^2 \times\left(1.5 \times 10^{11}\right)^3}{\left(6.67 \times 10^{-11}\right) \times(365 \times 24 \times 60 \times 60)^2}\)
= 2 × 1030 kg.

Question 14.
A saturn year is 29.5 times the earth year. How far is the saturn from the sun if the earth is 1.50 × 108 km away from the sun ?
Solution:
Here, Ts = 29.5 Te; Re = 1.5 × 108 km; Rs =?
Using the relation, \(\frac{\mathrm{T}_{\mathrm{s}}^2}{\mathrm{R}_{\mathrm{s}}^3}=\frac{\mathrm{T}_{\mathrm{e}}^2}{\mathrm{R}_{\mathrm{e}}^3}\)
or R = Re \(\left(\frac{\mathrm{T}_{\mathrm{s}}}{\mathrm{T}_{\mathrm{e}}}\right)^{2 / 3}\)
= 1.5 × 108 \(\left(\frac{29.5 \mathrm{~T}_{\mathrm{e}}}{\mathrm{T}_{\mathrm{e}}}\right)^{2 / 3}\)
= 1.43 × 109 km.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 15.
A body weighs 63 N on the surface of the earth. What is the gravitational force on it due to the earth at a height equal to half the radius of the earth?
Solution:
Weight of the body = mg = 63N
At height h, the value of g is given by
g’ = \(\frac{g R^2}{(R+h)^2}=\frac{g R^2}{(R+R / 2)^2}\) = 4/9 g
Gravitational force on body at height h is
F = mg’ = m × \(\frac{4}{9}\) g = \(\frac{4}{9}\) mg
= \(\frac{4}{9}\) × 63 = 28N

Question 16.
Assuming the earth to be a sphere of uniform mass density, how much would a body weigh half way down to the centre of the earth if it weighed 250 N on the surface ?
Solution:
wt. of body at a depth d = mg1
= m × g \(\left(1-\frac{d}{R}\right)\)
= 250 \(\left(1-\frac{R / 2}{R}\right)\)
= 125 N

Question 17.
A rocket is fired vertically with a speed of 5 km s-1 from the earth’s surface. How far from the earth does the rocket go before returning to the earth ? Mass of the earth = 6.0 × 1024 kg; mean radius of the earth = 6.4 × 106 m; G = 6.67 × 10-11 N m2 kg-2.
Solution:
Let the rocket be fired with velocity v from the surface of earth and it reaches a height h from the surface of earth where its velocity becomes zero.
Total energy of rocket at the surface of energy
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 18
or h = \(\frac{\mathrm{Rv}^2}{2 \mathrm{gR}-\mathrm{v}^2}\)
= \(\frac{\left(6.4 \times 10^6\right) \times\left(5 \times 10^3\right)^2}{2 \times 9.8 \times\left(6.4 \times 10^6\right)-\left(5 \times 10^3\right)^2}\)
= 1.6 × 106m

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 18.
The escape speed of a projectile on the earth’s surface is 11.2 km s-1. A body is projected out with thrice this speed. What is the speed of the body far away from the earth ? Ignore the presence of the sun and other planets.
Solution:
Here, ve = 11.2 kms-1, velocity of projection of the body v = 3ve. Let m be the mass of the projectile and v0 be the velocity of the projectile when far away from the earth (i.e) out of gravitational field of earth) then from the law of conservation of energy
\(\frac{1}{2}\) mv02 = \(\frac{1}{2}\) mv2 – \(\frac{1}{2}\) mve2
or v0 = \(\sqrt{v^2-v_e^2}\)
= \(\sqrt{(3 v e)^2-v_e^2}\)
= \(\sqrt{8} v_e=\sqrt{8}\) × 11.2 = 31.68 kms-1

Question 19.
A satellite orbits the earth at a height of 400 km above the surface. How much energy must be expended to rocket the satellite out of the earth’s gravitational influence ? Mass of the satellite = 200 kg; mass of the earth = 6.0 × 1024 kg; radius of the earth = 6.4 × 106 m; G = 6.67 × 10-11 N m2 kg-2.
Solution:
Total energy of orbiting satellite at a hight h.
= – \(\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}+\frac{1}{2} \mathrm{mv}^2\)
= – \(\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}+\frac{1}{2} m \frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})}\)
= \(\frac{\mathrm{GMm}}{2(\mathrm{R}+\mathrm{h})}\)
energy expended to rocket the satellite out of the earth’s gravitational field.
= – (total energy of orbiting satellite)
= \(\frac{\mathrm{GMm}}{2(\mathrm{R}+\mathrm{h})}\)
= \(\frac{\left(6.67 \times 10^{-11}\right) \times\left(6 \times 10^{24}\right) \times 200}{2\left(6.4 \times 10^6+4 \times 10^5\right)}\)
= 5.9 × 109J

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 20.
Two stars each of one solar mass (= 2 × 1030< kg) are approaching each other for a head on collision. When they are a distance i09 km, their speeds are negligible. What is the speed with which they collide? The radius of each star is 104< km. Assume the stars to remain undistorted until they collide. (Use the known value of G).
Solution:
Here, mass of each star, M = 2 × 1030< kg
initial distance between two stars, r = 109<
km = 1012< m.
initial potential energy of the system = – \(\frac{\text { GMM }}{r}\)
Total K.E. of the stars = \(\frac{1}{2}\) mv2< + \(\frac{1}{2}\) mv2<
= Mv2<
Where v is the speed of stars with which they collide. When the stars are about to collide, the distance between their centres, r1< = 2R.
∴ Final potential energy of two starts = \(\frac{-\mathrm{GMM}}{2 \mathrm{R}}\)
since gain in K.E. is at the cost of loss in P.E
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 19

Question 21.
Two heavy spheres each of mass 100 kg and radius 0.10 m are placed 1.0 m apart on a horizontal table. What is the gravitational force and potential at the mid point of the line joining the centres of the spheres ? Is an object placed at that point in equilibrium ? If so, is the equilibrium stable or unstable ?
Solution:
Gravitational field at the mid – point of the line joining the centres of the two spheres.
= \(\frac{\mathrm{GM}}{(r / 2)^2}(-\hat{r})+\frac{\mathrm{GM}}{(r / 2)^2} \hat{r}=0\)
Gravitational potential at the mid point of the list joining the centres of the two spheres is
v = \(\frac{-\mathrm{GM}}{r / 2}+\left(\frac{-\mathrm{GM}}{r / 2}\right)=\frac{-4 \mathrm{GM}}{r}\)
\(\frac{-4 \times 6.67 \times 10^{-11} \times 100}{1.0}\) = -2.7 × 10-8< J/kg
As the effective force on the body placed at mid-point is zero, so the body is in equilibrium. If the body is displaced a little towards either mass body from its equilibrium position, it will not return back to its initial position of equilibrium. Hence, the body is in unstable equilibrium.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 22.
As you have learnt in the text, a geo-stationary satellite orbits the earth at a height of nearly 36,000 km from the surface of the earth. What is the potential due to earth’s gravity at the site of this satellite ? (Take the potential energy at infinity to be zero). Mass of the earth = 6.0 × 1024 kg, radius = 6400 km.
Solution:
Gravitational potential at height h from the surface of earth is
v = \(\frac{-\mathrm{GM}}{(\mathrm{R}+\mathrm{h})}\)
= \(\frac{-6.67 \times 10^{-11} \times\left(6 \times 10^{24}\right)}{\left(6.4 \times 10^6+36 \times 10^6\right)}\)
= -9.4 × 106 J/kg.

Question 23.
A star 2.5 times the mass of the sun and collapsed to a size of 12 km rotates with a speed of 1.2 rev. per second. (Extremely compact stars of this kind are known as neutron stars. Certain stellar objects called pulsars belong to this category). Will an object placed on its equator remain stuck to its surface due to gravity ? (mass of the sun = 2 × 1030< kg).
Solution:
The object will remain struck to the surface of star due to gravity, if the accerlation due to gravity is more than the centrifugal accerlation due to its rotation.
Accerlation due to gravity, g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\)
= \(\frac{6.67 \times 10^{-11} \times 2.5 \times 2 \times 10^{30}}{(12000)^2}\)
= 2.3 × 1012 m/s2
centrifugal accerlation = rw2
= r(2πv)2
= 12000 (2π × 1.5)2
= 1.1 × 106 ms-2
since g > rω2 , therefore the body will remain struck with the surface of star.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 24.
A spaceship is stationed on Mars. How much energy must be expended on the spaceship to launch it out of the solar system ? Mass of the space ship = 1000 kg; mass of the sun = 2 × 1030 kg; mass of mars = 6.4 × 1023< kg; radius of mars = 3395 km; radius of the orbit of mars = 2.28 × 108< km; G = 6.67 × 10-11< N m2 kg 2 .
Solution:
Let R, be the radius of the orbit of mars and R be the radius of the mars. M be the mass of the sun and M’ be the mass of mars. If m is the mass of the space ship, then potential energy of space-ship due to gravitational attraction of the sun = \(\frac{-\mathrm{GMm}}{\mathrm{R}}\)
potential energy of space – ship due to gravitational attraction of mars = – \(\frac{\mathrm{GM}^1 \mathrm{~m}}{\mathrm{R}^1}\)
since K.E of space ship is zero, therefore total energy of spaceship
= \(\frac{-\mathrm{GMm}}{\mathrm{R}}\) – \(\frac{\mathrm{GM}^1 \mathrm{~m}}{\mathrm{R}^1}\)
= – Gm \(\left(\frac{M}{R}+\frac{M^1}{R^1}\right)\)
∴ energy required to rocket out the spaceship from the solar system = – (total energy of space ship)
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 20

Question 25.
A rocket is fired ‘vertically’ from the surface of mars with a speed of 2 km s-1. If 20% of its initial energy is lost due to martian atmospheric resistance, how far will the rocket go from the surface of mars before returning to it ? Mass of mars = 6.4 × 1023< kg; radius of mars = 3395 km; G = 6.67 × 10-11< N m2 kg-2.
Solution:
Let m = mass of the rocket, M = mass of the mars and
R = radius of mars. Let v be the initial velocity of rocket.
Initial K.E = \(\frac{1}{2}\) mv2; Initial P.E = – \(\frac{-\mathrm{GMm}}{\mathrm{R}}\)
Total initial energy = \(\frac{1}{2}\) mv2 – \(\frac{-\mathrm{GMm}}{\mathrm{R}}\)
since 20% of K.E is lost, only 80% is left behind to reach the height. Therefore
Total energy available = \(\frac{80}{100} \times \frac{1}{2}\) mv2
– \(\frac{-\mathrm{GMm}}{\mathrm{R}}\) = 0.4 mv2 – \(\frac{-\mathrm{GMm}}{\mathrm{R}}\)
If the rocket reaches the higher point which is at a height h from the surface of Mars, its
K.E. is zero and P.E. = \(\frac{-\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}\)
using principle of conservation of energy, we have
0.4 mv2 – \(\frac{\mathrm{GMm}}{\mathrm{R}}=-\frac{\mathrm{GMm}}{(\mathrm{R}+\mathrm{h})}\)
or \(\frac{\mathrm{GM}}{(\mathrm{R}+\mathrm{h})}=\frac{\mathrm{GM}}{\mathrm{R}}\) – 0.4 v2
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 21

Textual Examples

Question 1.
Let the speed of the planet at the perihelion P in Fig. be υp and the Sun- planet distance SP be rp. Relate {rp, υp} to the corresponding quantities at the aphelion {rA, υA}. Will the planet take equal times to traverse BAC and CPB ?
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 22
(a) An ellipse traced out by a planet around the sun. The colsest point is P and the farthest point is A. P is called the perihelion and A the aphelion. The semimajor axis (a) is half the distance AP
Answer:
The magnitude of the angular momentum at P is Lp = mp rp υp. Similarly, LA = mp rA υA. From angular momentum conservation
mp rp υp = mp rA υA
or \(\frac{v_p}{v_A}=\frac{r_A}{r_p}\)

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 2.
Three equal masses of m kg each are fixed at the vertices of an equilateral triangle ABC. (a) What is the force acting on a mass,2m placed at the centroid O of the triangle ? (b) What is the force if the mass at the vertex A is doubled ?
Take AO = BO = CO = 1 m (see Fig)
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 23
Three equal masses are placed at the three vertices of the ∆ABC. A mass 2m is placed at the centroid O.
Answer:
(a) The angle between OC and the positive x- axix is 30° and so is the angle between OB and the negative x-axis. The individual forces a vector notation are
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 24
From the principle of superposition and the law of vector addition, the resultant gravitational force FR on (2m) at O is
FR = FOA + FOB + FOC
FR = 2Gm2 \(\hat{\mathrm{j}}\) + 2Gm2 \(-\hat{\mathrm{i}}\) cos 30° – \(\hat{\mathrm{j}}\) sin 30°) + 2Gm2 (\(\hat{\mathrm{i}}\) cos 30° – \(\hat{\mathrm{j}}\) sin 30°) = 0
Alternatively, one expects on the basis of symmetry that the resultant force ought to be zero.

(b) By symmetry the x-component of the force cancels out. The y-component survives.
FR = 4Gm2 \(\hat{\mathrm{j}}\) – 2Gm2 \(\hat{\mathrm{j}}\) = 2Gm2 \(\hat{\mathrm{j}}\)

Question 3.
Find the potential energy of a system of four particles placed at the vertices of a square of side l. Also obtain the potential at the centre of the square.
Answer:
We have four mass pairs at distance l and two diagonal pairs at distance \(\sqrt{2}\)1 Hence,
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 25
= \(\frac{2 \mathrm{Gm}}{1}\left(2+\frac{1}{\sqrt{2}}\right)\) = -5.41 \(\frac{\mathrm{Gm}^2}{l}\)
The gravitational potential U(r) at the centre of the square (r = \(\sqrt{2}\) l / 2) is
U(r) = \(-4 \sqrt{2} \frac{\mathrm{Gm}}{\mathrm{l}}\)

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 4.
Two uniform solid spheres of equal radii R, but mass M and 4 M have a centre to centre separation 6 R, as shown in Fig. The two spheres are held fixed A projeetile of mass m is projected from the surface of the sphere of mass M directly towards the centre of the second sphere. Obtain an expression for the minimum speed v of the projectile so that it reaches the surface of the second sphere.
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 26
Answer:
If ON = r, we have
\(\frac{\mathrm{GMm}}{\mathrm{r}^2}=\frac{4 \mathrm{GMm}}{\left(6 \mathrm{R}-\mathrm{r}^2\right)}\)
(6R – r)2 = 4r2
6R – r = ±2r
r = 2R or – 6R.
The neutral point r = -6R does not concern us in this example. Thus ON = r = 2R.
Thereafter, the greater gravitational pull of 4M would suffice. The mechanical energy at the surface of M is
Ei = \(\frac{1}{2} \mathrm{~m} v^2-\frac{\mathrm{GMm}}{\mathrm{R}}-\frac{4 \mathrm{GMm}}{5 \mathrm{R}}\)
The mechanical energy at N is purely potential.
EN = \(-\frac{\mathrm{GMm}}{\mathrm{R}}-\frac{4 \mathrm{GMm}}{4 \mathrm{R}}\)
From the principle of conservation of mechanical energy
\(\frac{1}{2} v^2-\frac{G M}{R}-\frac{4 G M}{5 R}=-\frac{G M}{2 R}-\frac{G M}{R}\)
υ2 = \(\frac{2 G M}{R}\left(\frac{4}{5}-\frac{1}{2}\right)\)
υ2 = \(\left(\frac{3 \mathrm{GM}}{5 R}\right)^{1 / 2}\)

Question 5.
The planet Mars has two moons, phobos and delmos. (i) phobos has a period 7 hours, 39 minutes and an orbital radius of 9.4 × 103 km. Calculate the mass of Mars, (ii) Assume that Earth and Mars move in circular orbits around the sun, with the Martian orbits being 1.52 times the orbital radius of the earth. What is the length of the Martain year in days ?
Answer:
(i) We employ T2 = K (RE + h)3 (where K = 4π2 / GME) with the Earth’s mass replaced by the Martian mass Mm
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 27
(ii) Once again Kepler’s third law comes to our aid,
\(\frac{T_M^2}{T_E^2}=\frac{R_{M S}^3}{R_{E S}^3}\)
Where RMS is the Mars-Sun distance and RES is the Earth-Sun distance.
∴ TM = (1.52)3/2 × 365
= 684 days
For example. the ratio of the semi-minor to semi-major axis for our Earth is, b/a = 0.99986.

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 6.
Weighing the Earth : You are given the following data g = 9.81 ms2 RE = 6.37 x106 m the distance to the moon R = 3.4 × 108 m and the time period of the moons revolution is 27.3 days. Obtain the mass of the Earth ME in two different ways.
Answer:
(1) From g = \(\frac{F}{m}=\frac{G M_E}{R_E^2}\)
ME = \(\frac{g R_E^2}{G}\)
= \(\frac{9.81 \times\left(6.37 \times 10^6\right)^2}{6.67 \times 10^{-11}}\)
= 5.97 × 1024kg. (by Method – 1)

(2) The moon is a satellite of the Earth. From the derivation of Kepler’s third law
AP Inter 1st Year Physics Study Material Chapter 9 Gravitation 28
= 6.02 × 1024kg (by Method – 2)
Both methods yield almost the same answer the difference between them being less than 1%.

Question 7.
Express the constant k T2 = K (RE + h)2 where K = 4π2/GME of in days and kilometres. Given k = 10-13 s2 m-3. The moon is at a distance of 3.84 × 105 km from the earth. Obtain its time period of revolution in days.
Answer:
Given
k = 10-13 s2 m-3 (d = day)
= 10-13 \(\left[\frac{1}{(24 \times 60 \times 60)^2} d^2\right]\)
\(\left[\frac{1}{(1 / 1000)^3 \mathrm{~km}^3}\right]\) = 1.33 × 10-14 d2 km-3
Using T2 = K (RE + h)3 (where k = 4π2/ GME) and the given value of k the time period of the moon is
T2 = (1.33 × 10-14) (3.84 × 105)3
T = 27.3 d

AP Inter 1st Year Physics Study Material Chapter 9 Gravitation

Question 8.
A 400 kg satellite is in a circular orbit of radius 2RE about the Earth. How much energy is required to transfer it to a circular orbit of radius 4RE? What are the changes in the kinetic and potential energies ?
Answer:
Initially,
E1 = \(\)
While finally
Ef = \(\)
The change in the total energy is
∆E = Ef – Ei
= \(\frac{\mathrm{GM}_E \mathrm{~m}}{8 R_E}=\left(\frac{\mathrm{GM}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}^2}\right) \frac{\mathrm{mR} \mathrm{R}_{\mathrm{E}}}{8}\)
∆E = \(\frac{\mathrm{gm} \mathrm{R}_{\mathrm{E}}}{8}=\frac{9.81 \times 400 \times 6.37 \times 10^6}{8}\)
= 3.13 × 109J
The kinetic enegy is reduced and it mimics ∆E, namely, ∆K = Kf – Ki = -3.13 × 109 J.
The change in potential energy is twice the change in the total energy, namely
∆V = Vf – Vi= -6.25 × 109 J

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Andhra Pradesh BIEAP AP Inter 1st Year Physics Study Material 8th Lesson Oscillations Textbook Questions and Answers.

AP Inter 1st Year Physics Study Material 8th Lesson Oscillations

Very Short Answer Questions

Question 1.
Give two examples of periodic motion which are not oscillatory.
Answer:

  1. The motion of planets around the sun.
  2. The motion of an electron round the nucleus.

Question 2.
The displacement in S.H.M. is given by y = a sin (20t + 4). What is the displacement when it is increased by 2π/ω ?
Answer:
The displacement in S.H.M. is y = a sin (20t + 4)
The time period T = \(\frac{2 \pi}{\omega}\) is increased, the displacement of the particle remains the same.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 3.
A girl is swinging seated in a swing. What is the effect on the frequency of oscillation if she stands ?
Answer:
Frequency (n) = \(\frac{1}{2 \pi} \sqrt{\frac{g}{l}}\), n ∝ \(\frac{1}{\sqrt{l}}\)
A girl swinging in standing position location of centre of mass shifts upwards l decreases, frequency of oscillation increases.

Question 4.
The bob of a simple pendulum is a hollow sphere filled with water. How will the period of oscillation change, if the water begins to drain out of the hollow sphere ?
Answer:
The period of the pendulum is same, when the bob is hollow (or) completely filled with water. As water flows out from the bob, the centre of gravity of the bob lowered. The pendulum length increases. Hence time period also increases. When the bob becomes empty, again centre of gravity shifts upwards. The pendulum length decreases. The time period also decreases.

Question 5.
The bob of a simple pendulum is made of wood. What will be the effect on the time period if the wooden bob is replaced by an identical bob of aluminum ?
Answer:
Time period (T) = \(2 \pi \sqrt{\frac{l}{g}}\), Time period is independent of mass of the bob.
Hence wooden bob is replaced by an identical aluminium bob, Time period remains constant.

Question 6.
Will a pendulum clock gain or lose time when taken to the top of a mountain.?
Answer:
T ∝ \(\frac{1}{\sqrt{g}}\), At the mountain top, the value of g decreases, hence time period increases i.e. the pendulum will take longer time to complete one vibration. Hence pendulum clock will loose time on the mountain top.

Question 7.
A pendulum dock gives correct time at the equator. Will it gain or lose time if it is taken to the poles ? If so, why ?
Answer:
Time period (T) = \(2 \pi \sqrt{\frac{l}{g}}\)
g value at poles is greater than at equator.
If it is taken to the poles g value increases, time period decreases.
So pendulum clock gains time.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 8.
What fraction of the total energy is K.E when the displacement is one half of a amplitude of a particle executing S.H.M.
Answer:
Total energy (E) = \(\frac{1}{2}\) mω2 A2
Given y = \(\frac{\mathrm{A}}{2}\), Kinetic energy = \(\frac{1}{2}\)mω2(A2 – y2) = \(\frac{1}{2}\) mω2\(\left(A^2-\frac{A^2}{4}\right)\) = \(\frac{3}{4}\) × \(\frac{1}{2}\)mω2A2
K.E = \(\frac{3}{4}\) × E
∴ \(\frac{K \cdot E}{E}\) = \(\frac{3}{4}\)

Question 9.
What happens to the energy of a simple harmonic oscillator if its amplitude is doubled ?
Answer:
Total energy (E) = \(\frac{1}{2}\)mω2A2
Given Amplitude A is doubled
E’ = \(\frac{1}{2}\)mω2(2A)2
E’ = 4 × \(\frac{1}{2}\)mω2A2
E’ = 4E
∴ Energy becomes four times.

Question 10.
Can a simple pendulum be used in an artificial satellite? (T.S. Mar. 16)
Answer:
No, in an artificial satellite acceleration due to gravity is zero. Hence we cannot use simple pendulum in an artificial satellite.

Short Answer Questions

Question 1.
Define simple harmonic motion. Give two examples.
Answer:
Simple harmonic motion : “A body is said to be in simple harmonic motion, if it moves to and fro along a straight line, about its mean position such that, at any point its acceleration is proportional to its displacement but opposite in direction and is directed always towards the mean position”.
w ∝ -x

If a is the acceleration of the body at any given displacement x from the mean position, the time for the body to be in S.H.M.
Displacement of a particle in S.H.M is given by
x(t) = A cos (ωt + ϕ)
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 1

Example:

  1. Motion of a simple pendulum.
  2. Motion of mass attached to a spring.
  3. Motion of atoms in solids.
  4. Cork floating on water.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 2.
Present graphically the variations of displacement, velocity and acceleration with time for a particle in S.H.M.
Answer:
Let us put ϕ = 0 and write the expressions for x(t),
υ(t) and a(t).
x(t) = A cos ωt. υ(t) = -Aωsinωt
a(t) = -ω2A cos ωt. The corresponding plots are shown in figure. All quantities varies sinusoidally with time.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 2
x(t) varies between – A to A; υ(t) varies from -ωA to ωA and a(t) varies from – ω2A to ω2A with respect to displacement plot, velocity plot has a phase difference of \(\frac{\pi}{2}\) and acceleration plot has a phase difference of π.

Question 3.
What is phase ? Discuss the phase relations between displacement, velocity and acceleration in simple harmonic motion.
Answer:
Phase : The phase of a particle executing S.H.M. at any instant is defined as its state (or) condition as regards to its position and direction of motion at that instant.

  1. Displacement : x = A cos (ωt – ϕ), (ωt – ϕ) is called phase and ϕ is epoch.
  2. Velocity : V = -Aω sin (ωt – ϕ), Here also (ωt – ϕ) is phase angle
  3. Acceleration : a = -ω2A cos (ωt – ϕ), Here also (ωt – ϕ) is phase angle.

Phase difference between displacement and velocity = \(\frac{\pi}{2}\)
Phase difference between velocity and acceleration = \(\frac{\pi}{2}\)
Phase difference between displacement and acceleration = π.

Question 4.
Obtain an equation for the frequency of oscillation of spring of force constant k to which a mass m is attached. Answer:
Let us consider a spring suspended vertically from a rigid support and loaded with a mass m. If it is now pulled down and released, it executes vertical oscillations about mean position.
Restoring force is directly proportional to the displacement, but oppositely directed
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 4
F ∝ -y
F = -ky —–> (1)
Where k is force constant
Ma = -ky (∴ F = Ma)
a = \(-\left(\frac{K}{M}\right) y\) —-> (2)
Since K and M are constant. We can write a ∝ -y
ie Acceleration is directly proportional to the displacement but oppositely directed. Hence oscillations of a loaded spring is S.H.M.
Comparing eq. (2) with a = -ω2y
ω2 = \(\frac{K}{M}\) ; ω = \(\sqrt{\frac{\mathrm{K}}{\mathrm{M}}}\)
T = \(\frac{2 \pi}{\omega}\) ; T = \(2 \pi \sqrt{\frac{\mathrm{M}}{\mathrm{K}}}\)
Frequency of oscillation (n) = \(\frac{1}{2 \pi} \sqrt{\frac{K}{M}}\) —> (3)

Question 5.
Derive expressions for the kinetic energy and potential energy of a simple harmonic oscillator.
Answer:
Kinetic energy of simple harmonic oscillator : The velocity of a particle in S.H.M. is given by
v = \(\omega \sqrt{A^2-y^2}\) ∴ Kinetic energy = \(\frac{1}{2}\) mv2 = \(\frac{1}{2}\) mω2(A2 – y2)
When y = 0, (K.E)Max = \(\frac{1}{2}\) mω2A2 (Mean position)
When y = A, (K.E)Min = 0 (Extreme position)
K.E is maximum at mean position and minimum at extreme position.

Potential energy of simple harmonic oscillator: When the displacement of a particle executing simple Harmonic oscillations increases, the restoring force also increases. The restoring force is in the opposite direction to the displacement. Therefore work is done in moving through the displacement, against restoring force. If F is the restoring force at the displacement y.
The average force against which work is done = \(\frac{\mathrm{O}+\mathrm{F}}{2}\) = \(\frac{F}{2}\)

∴ Workdone on the particle for the displacement (y) = Average force × displacement F
i.e. w = \(\frac{\mathrm{F}}{2}\) × y
w = \(\frac{\max y}{2}\) —- (1) (∵ F = ma)
But acceleration of a particle in S.H.M. is given by
a = ω2y —– (2)
Using eq’s (1) and (2). we get
The work done (w) = \(\frac{1}{2} m \omega^2 y^2\) mw2y2
This work done is stored in the form of P.E.
∴ P.E. = \(\frac{1}{2} m \omega^2 y^2\) —– (3)
If y = 0, (P.E)Min = 0 (At mean position)
If y = A, (P.E)Max = \(\frac{1}{2} m \omega^2 A^2\) (At extreme position).
∴ P.E. is maximum at extreme position and minimum at mean position.

Question 6.
How does the energy of a simple pendulum vary as it moves from one extreme position to the other during its oscillations?
Answer:
The total energy associated with a particle executing S.H.M. at any point is the sum of potential energy and kinetic energy at that point.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 5
Total energy (E) = K.E + P.E
K.E = \(\frac{1}{2} m \omega^2\left(A^2-y^2\right)\)
P.E. = \(\frac{1}{2} m \omega^2 y^2\)
T.E. = \(\frac{1}{2}\)mω2(A2 – y2) + \(\frac{1}{2}\)mω2y2 = \(\frac{1}{2}\)mω2A2
At mean position y = 0, P.E = 0
and (K.E)Max = \(\frac{1}{2} m \omega^2 A^2\)
∴ T.E. = 0 + \(\frac{1}{2} m \omega^2 A^2\) = \(\frac{1}{2} m \omega^2 A^2\)
At extreme position y = A, K.E = 0 and P.E = \(\frac{1}{2} m \omega^2 A^2\)
∴ (P.E)Max = \(\frac{1}{2} m \omega^2 A^2\)
From mean position to extreme position K.E. is to be converted into P.E.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 7.
Derive the expressions for displacement, velocity and acceleration of a particle executes S.H.M.
Answer:
Consider a particle P moves on the circumference of a circle of radius A with uniform angular velocity ω. Let PN be the perpendicular drawn to the diameter yy’ from P.
As P moves on the circumference of the circle, N moves on the diameter yy’ to and fro about the centre O.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 6
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 7

Velocity : The velocity of a partcile executing SHM is given by
v = \(\frac{d y}{d t}\) = \(\frac{\mathrm{d}}{\mathrm{dt}}\) (A sin ωt)
= Aω cos ωt = Aω\(\sqrt{1-\sin ^2 \omega t}\)
v = \(A \omega \sqrt{1-\left(\frac{y}{A}\right)^2}\) (∵ sin ωt = \(\frac{y}{A}\))
v = ω\(\omega \sqrt{A^2-y^2}\) —- (2)

Acceleration : As the rate of change of velocity gives acceleration of the particle executing S.H.M is given by
a = \(\frac{d v}{d t}\) = \(\frac{\mathrm{d}}{\mathrm{dt}}\)(Aω cos ωt) = -Aω2 sin ωt
∴ a = -ω2y —- (3)

Long Answer Questions

Question 1.
Define simple harmonic motion. Show that the motion of (point) projection of a particle performing uniform circular motion, on any diameter, is simple harmonic. (AP – Mar. ‘18; TS – Mar. ‘16)
Answer:
Simple harmonic motion : A body is said to be in simple harmonic motion, if it moves to and fro along a straight line, about its mean position such that, at any point its acceleration is proportional to its displacement but opposite in direction and directed always towards the mean position.

Show that the projection of uniform circular motion on any diameter is simple harmonic : Consider a particle P moving on the circumference of a circle of radius A with uniform angular velocity ω. Let O be the centre of the circle. XX’ and YY’ are two mutually perpendicular diameters of the circle as shown in the figure. Let PN be drawn perpendicular to the diameter YY’ from P. As P moves on the circumference of the circle, N moves on the diameter YY’ to and fro about the centre O. Let us consider the position of N at any time t, after leaving the point ‘O’, during its motion. The corresponding angular displacement of the particle P is AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 8
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 33
Hence acceleration is directly proportional to the displacement and opposite direction. Hence motion of N is simple harmonic.

Question 2.
Show that the motion of a simple pendulum is simple harmonic and hence derive an equation for its time period. What is seconds pendulum ? (TS – Mar. ’18, ’17, ’15, ’14, ’13; AP – Mar. ’17, ’16, ’15, ’14, ’13)
Answer:

  1. Consider simple pendulum, a small bob of mass m tied to an inextensible mass less string of length L and other end of the string is fixed from a rigid support.
  2. Once the bob is slightly displaced and released, it begins to oscillate about mean position.
  3. Let θ be the angular displacement and T be the tension in the string.
  4. The forces acting on the bob are (a) tension T along the string (b) weight mg acts vertically downwards.
  5. The force mg can be resolved into two components (1) mg cos θ along the PA and (2) mg sin θ acts along PB.
    AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 34
  6. From figure at point P,
    T = mg cos θ —– (1)
  7. The force mg sin θ will provide the restoring torque, which tends to bring the bob back to its mean position O.
  8. The restoring torque is given by
    \(\tau\) = Restoring force × ⊥lar distance
    \(\tau\) = -mg sin θ × L —– (2)
    Here negative sign shows that the torque acts to reduce θ.
    Then sin θ is replaced by θ i.e., sin θ ≈ θ
    x = -mg L θ —– (3) (∵ sin θ = θ – \(\frac{\theta^3}{3 !}\) + \(\frac{\theta^3}{5 !}\) …..)
  9. From equation (3), we note that \(\tau\) ∝ θ. and This \(\tau\) will bring the bob back towards its equilibrium position.
    So, if the bob is left free, it will execute angular simple harmonic motion.
    Comparing equation (3), with the equation \(\tau\) = -kθ, we have Spring factor, k = mgL.
  10. Here inertia factor = Moment of inertia of the bob about the point of suspension = mL2
  11. In S.H.M, Time period (T) = \(2 \pi \sqrt{\frac{\text { Inertia factor }}{\text { Spring factor }}}\)
    T = \(2 \pi \sqrt{\frac{m L^2}{m g L}}\)
    T = \(2 \pi \sqrt{\frac{L}{g}}\) — (4)
    Seconds pendulum : A pendulum whose time period is 2 seconds is called seconds pendulum.
    T = 2 seconds.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 3.
Derive the equation for the kinetic energy and potential energy of a simple harmonic oscillator and show that the total energy of a particle in simple harmonic motion is constant at any point on its path.
Answer:
Kinetic energy : The velocity of a particle in S.H.M is given by v = ω\(\sqrt{A^2-y^2}\)
∴ Kinetic energy = \(\frac{1}{2} \mathrm{mv}^2\) = \(\frac{1}{2} m \omega^2\left(A^2-y^2\right)\) —— (1)
We know that y = A sin ωt
K.E = \(\frac{1}{2}\)mω2A2[1 – sin2ωt) —— (2)
When y = 0, (K.E)Max = –\(\frac{1}{2}\)mω2A2 (Mean position)
When y = A, (K.E)Min = 0 (At extreme position)
∴ K.E is maximum at mean position and minimum at extreme position.

Potential energy : When the displacement of a particle executing simple harmonic oscillations increase, the restoring force also increases. The restoring force is in the opposite direction to the displacement. Therefore work is done in moving through the displacement, against restoring force. If F is restoring force at the displacement y.
The average force against which work is done = \(\frac{\mathrm{O}+\mathrm{F}}{2}\) = \(\frac{F}{2}\)

∴ Workdone on the particle for the displacement (y) = Average force × displacement.
i.e., w = \(\frac{1}{2}\) × y
w = \(\frac{\max y}{2}\) —– (3) (∵ F = ma)
But acceleration of a particle in S.H.M is given by
a = -ω2y —– (4)
Using equations (3) and (4), we get
The work done (W) = \(\frac{1}{2}\)mω2y2
This work done is stored in the form of P.E
∴ P.E = \(\frac{1}{2}\)mω2y2 —– (5)
∴ P.E = \(\frac{1}{2}\)mω2A2 sin2ωt —– (6) (∵ y = A sin ωt)
If y = 0, (P.E)Min = 0 (At mean position)
If y = A, (P.E)Max = – \(\frac{1}{2}\)mω2A2 (At extreme position)
∴ P.E. is maximum at extreme position and minimum at mean position.

Total energy (E) : The total energy associated with a particle executing S.H.M at any point is the sum of RE and K.E at that point.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 35
Total energy (E) = K.E + P.E
K.E. = \(\frac{1}{2}\)mω2y2
∴ T.E. = \(\frac{1}{2}\)mω2 (A2 – y2) + \(\frac{1}{2}\)mω2y2 = \(\frac{1}{2}\)mω2A2
At mean position y = 0, RE = 0, (KE)Max = – \(\frac{1}{2}\)mω2A2
∴ T.E = K.E + P.E
T.E = \(\frac{1}{2}\)mω2A2 + 0 = \(\frac{1}{2}\)mω2A2
At extreme position, y = A, K.E = 0 and,
(P.E)Max = \(\frac{1}{2}\)mω2A2.
∴ T.E = K.E + P.E
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 9
T.E. = O + \(\frac{1}{2}\)mω2A2 = \(\frac{1}{2}\)mω2A2
From mean position to extreme position K.E is to be converted into RE.

Problems

Question 1.
The bob of a pendulum is made of a hollow brass sphere. What happens to the time period of the pendulum, if the bob is filled with water completely ? Why?
Solution:
Time period (T) = \(2 \pi \sqrt{\frac{1}{g}}\)
The period of the pendulum is same. When the bob is hollow (or) completely filled with water. As water flows out from the bob, the centre of gravity of the bob lowers.

The pendulum length increases. Hence time period also increases. When the bob becomes empty, again centre of gravity shifts upwards. The pendulum length decreases. The time period also decreases.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 2.
Two identical springs of force constant “k” are joined one at the end of the other (in series). Find the effective force constant of the combination.
Solution:
k1 = k2 = k
If two springs are connected in series
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 10

Question 3.
What are the physical quantities having maximum value at the mean position in SHM ?
Solution:

  1. Velocity, Vmax = Aω
  2. Kinetic energy, (K.E)Max = \(\frac{1}{2}\)mω2A2.

Question 4.
A particle executes SHM such that, the maximum velocity during the oscillation is numerically equal to half the maximum acceleration. What is the time period ?
Solution:
Given VMax = \(\frac{1}{2}\)aMax
Aω = \(\frac{1}{2}\)ω2
ω = 2
T = \(\frac{2 \pi}{\omega}\) = \(\frac{2 \pi}{2}\) = π sec.

Question 5.
A mass of 2 kg attached to a spring of force constant 260 Nm-1 makes 100 oscillations. What is the time taken ?
Solution:
m = 2 kg, k = 260 N/m
T = \(2 \pi \sqrt{\frac{m}{k}}\) = 2 × 3.14\(\sqrt{\frac{2}{260}}\) = 0.5508sec.
∴ Time for 100 oscillations = 100 × 0.5508
= 55.08 sec.

Question 6.
A simple pendulum in a stationery lift has time period T. What would be the effect on the time period when the lift

(i) moves up with uniform velocity
(ii) moves down with uniform velocity
(iii) moves up with uniform acceleration a
(iv) moves down with uniform acceleration ‘a’
(v) begins to fall freely under gravity ?

Solution:

i) When the lift moves up with uniform velocity
T = \(2 \pi \sqrt{\frac{1}{g}}\)
No change in time period.

ii) When the lift moves down with uniform velocity. No change in the time period.

iii) When the lift moves up with acceleration.
T = \(2 \pi \sqrt{\frac{1}{g+a}}\)
Time period decreases.

iv) When the lift moves down with acceleration.
T = 2π\(\sqrt{\frac{1}{g-a}}\)
Time period increases.

v) Lift falls freely, a = g
T = 2π\(\sqrt{\frac{l}{g-g}}\) = 2π\(\sqrt{\frac{1}{0}}\) = ∝
Time period becomes infinity.

Question 7.
A particle executing SHM has amplitude of 4 cm and its acceleration at a distance of 1 cm from the mean position is 3 cm s-2. What will is velocity be when it is at a distance of 2 cm from its mean position ?
Solution:
A = 4 cm, x1 = 1 cm, a = 3 cm/s2
a = ω2x1
3 = ω2 × 1
ω = \(\sqrt{3}\)
Velocity v = ω\(\sqrt{A^2-x_2^2}\)
(∵ x2 = 2 cm)
v = \(\sqrt{3} \sqrt{4^2-2^2}\)
v = \(\sqrt{3} \times \sqrt{12}\)
v = \(\sqrt{36}\) = 6 cm/s.

Question 8.
A simple harmonic oscillator has a time period of 2s. What will be the change in the phase 0.25 s after leaving the mean position ?
Solution:
T = 2 sec
t = 0.25 sec
sin ωt = sin\(\left(\frac{2 \pi}{T}\right) t\)
ϕ = ωt = \(\frac{2 \pi}{T}\) × t
= \(\frac{2 \pi}{2}\) × 0.25
ϕ = \(\frac{\pi}{4}\)

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 9.
A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. find the acceleration and velocity of the body when the displacement is
(a) 5 cm.
(b) 3 cm.
(c) 0 cm.
Solution:
A = 5 cm = 5 × 10-2 m
T = 0.2 sec.

i) y = 5 cm = 5 × 10-2 m
ω = \(\frac{2 \pi}{T}\) = \(\frac{2 \pi}{0.2}\) = 10π
Acceleration (a) = -ω22y = -(10π)2 × 5 × 10-2
a = -5π2 m/s2
Velocity (v) = ω\(\sqrt{A^2-y^2}\)
= 10π\(\sqrt{\left(5 \times 10^{-2}\right)^2-\left(5 \times 10^{-2}\right)^2}\)

ii) y = 3 cm = 3 × 10-2 m
Acceleration (a) = -ω2y = -(10π)2 × 3 × 10-2
= -3π2 m/s2
Velocity (v) = ω\(\sqrt{A^2-y^2}\)
= 10π\(\sqrt{\left(5 \times 10^{-2}\right)^2-\left(3 \times 10^{-2}\right)^2}\)
= 10π\(\sqrt{25-9}\) × 10-2
v = 0.4π m/s.

iii) y = 0 cm
a = -ω2y = -(10π)2 × 0
Velocity (v) = ω\(\sqrt{A^2-y^2}\)
= 10π\(\sqrt{\left(5 \times 10^{-2}\right)^2-0}\)
= 0.5π m/s

Question 10.
The mass and radius of a planet are double that of the earth. If the time period of a simple pendulum on the earth is T, find the time period on the planet.
Solution:
g = \(\frac{\mathrm{GM}}{\mathrm{R}^2}\)
g ∝ \(\frac{M}{R^2}\)
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 12

Question 11.
Calculate the change in the length of a simple pendulum of length 1 m, when its period of oscillation changes from 2 s to 1.5 s. (T.S. Mar. ’18)
Solution:
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 13

Question 12.
A freely falling body takes 2 seconds to reach the ground on a plane, when it is dropped from a height of 8 m. If the period of a simple pendulum is seconds on the planet, calculate the length of the pendulum.
Solution:
u = 0, t = 2 sec, s = h = 8 m
s = ut + \(\frac{1}{2}\)at
s = 0 × t + \(\frac{1}{2}\) × g × 22
g = 4m/s2
T = \(2 \pi \sqrt{\frac{1}{g}}\)
π = \(2 \pi \sqrt{\frac{1}{4}}\)
l = 1 m = 100 cm.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 13.
The period of a simple pendulum is found to increase by 50% when the length of the pendulum is increased by 0.6 m. Calculate the initial length and the initial period of oscillation at a place where g = 9.8 m s-2.
Solution:
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 14

Question 14.
A clock regulated by a second’s pendulum keeps correct time. During summer the length of the pendulum increases to 1.02 m. How much will the clock gain or lose in one day ?
Solution:
T = 2π\(\sqrt{\frac{1}{g}}\)
T ∝ \(\sqrt{l}\)
\(\frac{d T}{T}\) = \(\frac{1}{2} \frac{\mathrm{d} l}{l}\)
T = 2 sec, l = \(\frac{\mathrm{g}}{\pi^2}\) = 0.9927
dl = 1.02 – 0.9927 = 0.0273
\(\frac{d T}{2}\) = \(\frac{1}{2}\left(\frac{0.0273}{0.9927}\right)\)
dT = \(\frac{0.0273}{0.9927}\)
No. of oscillations performed per day by seconds pendulum = \(\frac{\text { One day }}{2 \text { Sec. }}\)
= \(\frac{86,400}{2}\) = 43,200.

The gain (or) loss of time per day = No. of oscillations in one day to the change in time for one oscillation = 43,200 × \(\frac{0.0273}{0.9927}\)
= 1180 sec.

Question 15.
The time period of a body suspended from a spring is T. What will be the new time period if the spring is cut into two equal parts and the mass is suspended
(i) from one part
(ii) simultaneously from both the parts ?
Answer:
T = \(2 \pi \sqrt{\frac{m}{k}}\)
i) Spring is cut into two parts, k’ = 2k
T’ = \(2 \pi \sqrt{\frac{m}{k^{\prime}}}\) = \(\frac{T}{\sqrt{2}}\)
ii) When the mass is suspended from both the parts
T = \(2 \pi \sqrt{\frac{m}{2 k+2 k}}\) = \(2 \pi \sqrt{\frac{m}{4 k}}\) = \(\frac{T}{2}\)

Additional Problems

Question 1.
Which of the following examples represent periodic motion ?
a) A swimmer completing one (return) trip from one bank of a river to the other and back. .
b) A freely suspended bar magnet displaced from its N – S direction and released.
c) A hydrogen molecule rotating about its centre of mass.
d) An arrow released from a bow.
Solution:
a) It is not a periodic motion. Though the motion of a swimmer is to and fro but will not have a definite period.
b) It is a periodic motion because a freely suspended magnet if once displaced from N-S direction and let it go, it oscillation about this position. Hence it is simple harmonic motion also.
c) It is also a periodic motion.
d) It is not a periodic motion.

Question 2.
Which of the following examples represent (nearly) simple harmonic motion and which represent periodic but not simple harmonic motion ?
a) The rotation of earth about its axis.
b) Motion of an oscillating mercury column in a U-tube.
c) Motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lower most point.
d) General vibrations of a polyatomic molecule about its equilibrium position.
Solution:
a) It is periodic but not SHM because it is not to and fro motion about a fixed point.
b) It is SHM
c) It is SHM
d) It is a periodic but not SHM. A polyatomic gas molecule has a number of natural frequencies and its general motion is the resultant of S.H.M’s of a number of different frequencies. The resultant motion is periodic but not SHM.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 3.
Fig. depicts four x-t plots for linear motion of a particle. Which of the plots represent periodic motion ? What is the period of motion (in case of periodic motion)?
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 15
Solution:
a) Does not represent periodic motion, as the motion neither repeats nor comes to mean position.
b) Represents periodic motion with period equal to 2s.
c) Does not represent periodic motion, because it is not identically repeated.
d) Represents periodic motion with periodic equal to 2s.

Question 4.
Which of the following functions of time represent
(a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion ? Give period for each case of periodic motion (ω is any positive constant)
a) sin ωt – cos ωt
b) sin3 ωt
c) 3 cos (π/4 – 2ωt)
d) cos ωt + cos 3ωt + cos 5 ωt
e) exp (-ω2t2)
f) 1 + ωt + ω2t2.
Solution:
The function will represent a periodic motion, if it is identically repeated after a fixed interval of time and will represent SHM. If it can be written uniquely in the form of a
cos \(\left(\frac{2 \pi \mathrm{t}}{\mathrm{T}}+\phi\right)\) or a
sin \(\left(\frac{2 \pi \mathrm{t}}{\mathrm{T}}+\phi\right)\), where T is the time period.

a) sin ωt – cos ωt
= \(\sqrt{2}\)(\(\frac{1}{\sqrt{2}}\)sin ωt – \(\frac{1}{\sqrt{2}}\)cos ωt)
= \(\sqrt{2}\)(sin ωt cos \(\frac{\pi}{4}\) – cos ωt sin \(\frac{\pi}{4}\))
= \(\sqrt{2}\)(ωt\(\frac{\pi}{4}\))
It is a S.H.M and its period is 2π/ω.

b) sin3 ωt = \(\frac{1}{4}\)(3sin ωt – sin 3ωt)
Here each term sin ωt and sin 3ωt individually represents S.H.M. But (ii) which is the out come of the super position of two S.H.Ms will only be periodic but not S.H.M. its time period is 2π/ω.
(∵ cos (-θ) = cos θ).

c) 3 cos \(\left(\frac{\pi}{4}-2 \omega t\right)\) = 3 cos \(\left(2 \omega t-\frac{\pi}{4}\right)\)
Clearly it represents S.H.M. and its time period is 2π/2ω.

d) cos ωt + cos 3ωt + cos 5ωt it represents the periodic but not S.H.M its time period is 2π/ω.

e) \(\mathrm{e}^{-\omega^2 t^2}\) it is an exponential function which never repeats itself. Therefore it represents non-periodic motion.

f) 1 + ωt + ω2t2 also represents non periodic motion.

Question 5.
A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
a) at the end A
b) at end B
c) at the mid-point of AB going towards A
d) at 2 cm away from B going towards A
e) at 3 cm away from A going towards B and
f) at 4 cm away from B going towards A.
Solution:
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 16
Refer figure here A and B represent the two extreme positions of a S.H.M. For velocity, the direction from A to B is taken as positive for acceleration and the force, the direction is taken positive if directed along AP and negative if directed along BP.
a) At the end A, the artice executing S.H.M is momentarily at rest being its extreme position of motion, hence its velocity is zero, acceleration is +ve because directed along AP. Force is also +ve since the force is directed towards AP i.e + ve direction.
b) At the end B, velocity is zero. Here acceleration and force are negative as they are directed along BP i.e. along negative direction.
c) At the mid point AB going towards A, the particle is at its mean position P, with a tendency to move along PA i.e. -ve direction. Hence velocity is -ve both acceleration and force are zero.
d) At 2 cm away from B going towards A, the particle is at Q, with a tendency to move along QP, which is a negative direction there velocity, acceleration and force are all -ve.
e) At 3 cm away from A going towards B, the particle is at R with a tendency to move along RP, which is positive direction, there, velocity, acceleration and force are all +ve.
f) At 4 cm away from A going towards A, the particle is at S, with a tendency to move along SA which is negative direction for velocity. Therefore velocity is negative but acceleration is directed towards mean position i.e., along SP, hence +ve. Similarly force is also +ve.

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 6.
Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion ?
a) a = 0.7x
b) a = -200x2
c) a = -10x
d) a = 100x3
Solution:
In S.H.M acceleration a is related to displacement by the related of the form a = -kx which is for relation (c).

Question 7.
The motion of a particle executing simple harmonic motion is described by the displacement function.
x(t) = A cos (ωt + ϕ).
If the initial (t = 0) position of the particle is 1 cm and its initial velocity is ω cm/s, what are its amplitude and initial phase angle ? The angular frequency of the particle is πs-1. If instead of the cosine function, we choose the sine function to describe the SHM : x = B sin (ωt + α), what are the amplitude and initial phase of the particle with the above initial conditions.
Solution:
Here, at t = 0, x = 1 cm and v = ω cm s-1, ϕ = ?; ω = πs-1
Given x = A cos (ωt + ϕ)
1 = A cos (π × 0 + ϕ) or
= A cos ϕ —– (i)
Velocity, v = \(\frac{d x}{d t}\) = – Aω(sin ωt + ϕ)
∴ ω = -Aω sin (π × 0 + ϕ) or 1 = – A sin ϕ
or A sin ϕ = -1 —— (ii)
Squaring and adding (i) and (ii)
A2(cos2 ϕ + sin2 ϕ) = 1 + 1 = 2 or A2 = 2 or A = \(\sqrt{2}\) cm
Dividing (ii) by (i), we get
tan ϕ = -1 or ϕ = \(\frac{3 \pi}{4}\) or \(\frac{7 \pi}{4}\)
For, x = B sin (ωt + α) —— (iii)
At t = 0, x = 1, so,
1 = B sin (ω × 0 + α) = B sin α —– (iv)
Differentiating (iii), w.r.t, t we have dx
velocity, v = \(\frac{d x}{d t}\) = Bω cos (ωt + α)
Applying initial conditions i.e. at t = 0, v = ω
ω = Bωcos (π × 0 + α)
or 1 = B cos α —– (v)
Squaring and adding (iv) and (v) we get
B2sin2α + B2 cos2 α = 12 + 12 = 2 or B2 = 2 or B = \(\sqrt{2}\) cm
Dividing (iv) by (v), we have
\(\frac{B \sin \alpha}{B \cos \alpha}\) = \(\frac{1}{1}\) or tan α = 1 or α = \(\frac{\pi}{4}\) or \(\frac{5 \pi}{4}\).

Question 8.
A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20 cm. A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s. What is the weight of the body ?
Solution:
Here. m = 50 kg, max. extension.
y = 20 – 0 = 20 cm = 0.2 m; T = 0.65
Max. Force, F = mg = 5 × 9.8 N
K = \(\frac{F}{y}\) = \(\frac{50 \times 9.8}{0.2}\) = 2450 Nm-1
As T = \(2 \pi \sqrt{\frac{m}{k}}\)
m = \(\frac{T^2 k}{4 \pi^2}\)
= \(\frac{(0.6)^2 \times 2450}{4 \times(3.14)^2}\)
= 22.36 kg
∴ Weight of body = mg = 22.36 × 9.8
= 219.1 N
= 22.36 kgf

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 9.
A spring having with a spring constant 1200 Nm-1 is mounted on a horizontal table as shown in fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 17
Determine
(i) the frequency of oscillations,
(ii) maximum acceleration of the mass, and
(iii) the maximum speed of the mass.
Solution:
Here, k = 1200 Nm-1, m = 3.0 kg, a = 2.0 cm = 0.02 m
a)
Frequency,
υ = \(\frac{1}{T}\) = \(\frac{1}{2 \pi} \sqrt{\frac{k}{m}}\)
= \(\frac{1}{2 \times 3.14} \sqrt{\frac{1200}{3}}\)
= 3.2s-1

b) Acceleration A = ω2y = \(\frac{k}{m}\)y
Acceleration will be maximum when y is maximum i.e. y = a
Max. acceleration, Amax = \(\frac{k_a}{m}\) = \(\frac{1200 \times 0.02}{3}\)
= 8 ms-2

c) Max. speed of the mass will be when it is passing through the mean position, which is given by
Vmax = aω = a\(\sqrt{\frac{k}{m}}\)
= 0.02 × \(\sqrt{\frac{1200}{3}}\) = 0.4 ms-1

Question 10.
In exercise, let us take the position of mass when the spring is unstreched as x = 0, and the direction from left to right as the positive direction of x-axis. Give x as a function of time t for the oscillating mass if at the moment we start the stopwatch (t = 0), the mass is
a) at the mean position
b) at the maximum stretched position and
c) at the maximum compressed position
In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase ?
Solution:
Here, a = 2.0 cm; ω = \(\sqrt{\frac{k}{m}}\) = \(\sqrt{\frac{1200}{3}}\) = 20s-1

a) As time is noted from the mean position, hence using
x = a sin ωt, we have x = 2 sin 20t

b) At maximum stretched position, the body is the extreme right position, with an initial phase of \(\frac{\pi}{2}\) rad. Then
x = a sin \(\left(\omega t+\frac{\pi}{2}\right)\)
= a cos ωt = 2 cos 20t

c) At maximum compressed position, the body is at the extreme left position, with an initial phase of \(\frac{3 \pi}{2}\) rad.
Then x = a sin (ωt + \(\frac{3 \pi}{2}\))
= -a cos ωt
= -2 cos 20t

Question 11.
Figures correspond to two circular motions. The radius of the circle, the period of revolution, the initial position, and the sense of revolution (i.e. clockwise or anti-clockwise) are indicated on each figure.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 18
Obtain the corresponding simple ‘ harmonic motions of the x-projection of the radius vector of the revolving particle P, in each case.
Solution:
In Fig. (a) T = 2s ; a = 3 cm
At t = 0, OP makes an angle \(\frac{\pi}{2}\) with X-axis
i.e., ϕ = \(\frac{\pi}{2}\) radian.
While moving clockwise, here ϕ = +\(\frac{\pi}{2}\). Thus the X-projection of OP at time t will give us the equation of S.H.M. given by
x = a cos \(\left(\frac{2 \pi t}{T}+\phi\right)\)
= 3cos \(\left(\frac{2 \pi t}{2}+\frac{\pi}{2}\right)\) or x = -3
sin πt (x is in cm)
In Fig. (b) T = 4s ; a = 2m
At t = 0, OP makes an angle π with the positive direction of X-axis i.e., ϕ = π. While moving anticlockwise, here ϕ = +π.
Thus the X-projection of OP at time t will give us the equation of S.H.M. as
x = a cos \(\left(\frac{2 \pi t}{T}+\phi\right)\)
= 2 cos \(\left(\frac{2 \pi t}{4}+\pi\right)\)
= -2 cos \(\left(\frac{\pi}{2} t\right)\) (x is in m)

Question 12.
Plot the corresponding reference circle for each of the following simple harmonic motions. Indicate the initial (t = 0) position of the particle, the radius of the circle, and the angular speed of the rotating particle. For simplicity, the sense of rotation may be fixed to be anticlockwise in every case : (x is in cm and t is in s).
a) x = -2 sin (3t + π/3)
b) x = cos (π/6 – t)
c) x = 3 sin (2πt + π/4)
d) x = 2 cos πt.
Solution:
If we express each function of the form
x = a cos (cot + ϕ) —— (i)
Where ϕ is the initial phase i.e., ϕ represents the angle which the initial radius vector of the particle makes with the -l-ve direction of X-axis.

a) x = -2 sin (3t + \(\frac{\pi}{3}\)) = 2 cos (\(\frac{\pi}{2}\) + 3t + \(\frac{\pi}{3}\))
or x = 2 cos (3t + \(\frac{5 \pi}{6}\))
Comparing it with equation (i), we note
that a = 2, ω = 3 and ϕ = \(\frac{5 \pi}{6}\)
Hence, the reference circle will be shown in Fig. (a).

b) x = cos\(\left(\frac{\pi}{6}-t\right)\) = cos \(\left(t-\frac{\pi}{6}\right)\)
(∵ cos (-θ) = cos θ))
Comparing it with equation (i), we note
that a = 1, ω and ϕ = \(\frac{\pi}{6}\)
The reference circle will be as shown in Fig. (b).

c) x = 3 sin \(\left(2 \pi t+\frac{\pi}{4}\right)\)
= 3 cos \(\left(2 \pi t+\frac{3 \pi}{2}+\frac{\pi}{4}\right)\)
Comparing it with equation (i), we note that a = 3, ω = 2π and ϕ = \(\frac{3 \pi}{2}\) + \(\frac{\pi}{4}\) = \(\frac{7 \pi}{4}\)
The reference circle will be as in Fig. (c).

d) x = 2 cos πt
Comparing it with equation (i), we note
that a = 2, = π and ϕ = 0.
The reference circle will be as shown Fig. (d)
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 19

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 13.
Figures (a) shows a spring of force constant k clamped rigidly at one end and a mass m attached to its free end. A force F applied at the free end stretches the spring. Figure (b) shows the same spring with both ends free and attached to a mass at either end. Each end of the spring in Fig. (b) is stretched by the same force F.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 20
a) What is the maximum extension of the spring in two cases ?
b) If the mass in Fig. (a) and the two masses in Fig. (b) are released, what is the period of oscillation in each case ?
Solution:
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 21
a) The maximum extension of the spring in both the cases will be = \(\frac{F}{K}\), where K is the spring constant of the spring used.
b) In Fig. (a), if x is the extension in the spring, when mass m is returning to its mean posi-tion after being released free, then restoring force on the mass is F = -Kx i.e., F ∝ x.
As this F is directed towards mean position of the mass, hence the mass attached to the spring will execute SHM. Here, spring factor = spring constant
= K
Inertia factor = mass of the given mass
= m
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 22
In Fig.(b). we have a two body system of spring constant K and reduced mass,
μ = \(\frac{m \times m}{m+m}\) = \(\frac{m}{2}\)
Here, inertia factor = \(\frac{m}{2}\)
and spring factor = K
∴ Time period, T = 2π\(\sqrt{\frac{(m / 2)}{k}}\)
= 2π\(\sqrt{\frac{m}{2 K}}\)

Question 14.
The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency of 200 rad/min. what is its maximum speed ?
Solution:
Given a = \(\frac{1}{2}\)m; ω = 200 rev/min ;
Vmax = aω
= \(\frac{1}{2}\) × 200
= 100 m/min.

Question 15.
The acceleration due to gravity on the surface of moon is 1.7 ms-2. What is the time period of a simple pendulum on the surface of moon if its time period on the surface of earth is 3.5 s ? (g on the surface of earth is 9.8 ms-2).
Solution:
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 23

Question 16.
Answer the following questions :
a) Time period of a particle in SHM depends on the force constant k and mass m of the particle :
T = \(2 \pi \sqrt{\frac{\mathrm{m}}{\mathrm{k}}}\). A simple pendulum executes SHM approximately. Why then is the time period of a pendulum independent of the mass of the pendulum ?
b) The motion of a simple pendulum is approximately simple harmonic for small angle oscillations. For larger angles of oscillation, a more involved analysis shows that T is greater than \(2 \pi \sqrt{\frac{l}{g}}\). Think of a qualitative argument to appreciate this result.
c) A man with a wristwatch on his hand falls from the top of a tower. Does the watch give correct time during the free fall ?
d) What is the frequency of oscillation of a simple pendulum mounted in cabin that is freely falling under gravity ?
Solution:
a) For a simple pendulum, force constant or spring factor K is proportional to mass m, therefore, m cancels out in denominator as well as in numerator. That is why the time period of simple pendulum is independent of the mass of the bob.

b) The effective restoring force acting on the bob of simple pendulum in displaced position is
F = -mg sin θ. When θ is small, sin θ = θ. Then the expression for time period of simple pendulum is given by T = \(2 \pi \sqrt{\mu \mathrm{g}}\) When θ is large sin θ < θ, if the restoring force mg sin θ is replaced by mgθ, this amounts to effective reduction in the value of ‘g’ for large angles and hence an increase in the value of time period T.

c) Yes, because the working of the wrist watch depends on spring action and it has nothing to do with gravity.

d) We know that gravity disappears for a man under free fall, so frequency is zero.

Question 17.
A simple pendulum of length l and having a bob of mass M is suspended in a car. The car is moving on a circular track of radius R with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period ?
Solution:
Centripetal acceleration, ac = \(\frac{v^2}{R}\), it is acting horizontally.
Acceleration due to gravity = g acting vertically downwards.
Effective acceleration due to gravity
g’ = \(\sqrt{g^2+\frac{v^4}{R^2}}\)
∴ Time period, T = 2π\(\sqrt{\frac{1}{g}}\)
= 2π\(\sqrt{\frac{1}{g^2+v^4 / R^2}}\)

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 18.
A cylindrical piece of cork of density of base area A and height h floats in a liquid of density ρ1. The cork is depressed slightly and then released. Show that the cork oscillates up and down simple harmonically with a period.
T = \(2 \pi \sqrt{\frac{h \rho}{\rho_1 g}}\)
where ρ is the density of cork. (Ignore damping due to viscosity of the liquid).
Solution:
Mass of the cylinder (m) = volume × density
= Ahρ ——- (1)
F1 = weight of the liquid displaced by the length l of the cylinder
= (Al)ρ1g —— (2)
Weight of the cylinder = mg —– (3)
In equilibrium position, mg = Alρ1g
m = Alρ1 —– (4)
F2 = A(l + y)ρ1g —– (5)
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 24
Restoring force (F) = -(F2 – mg)
= -[A(l + y)ρ1g – Alρ1g]
F = Ayρ1g = -(Aρ1g)y —— (6)
In S.H.M. F = -Ky —– (7)
From eqs. (6) & (7),
spring factor (K) = Aρ1g ——(8)
Inertia factor, m = Ahρ ——- (9)
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 25

Question 19.
One end of a U-tube containing mercury is connected to a suction pump and the other end to atmosphere. A small pressure difference is maintained between the two columns. Show that, when the suction pump is removed, the column of mercury in the U-tube executes simple harmonic motion.
Solution:
Consider a liquid of density ρ contained in a vertical U-tube of cross-sectional area A. Total length of the liquid column from P to P1 is L.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 26
Mass (m) = LAρ
PQ = y, P1Q1 = y, QQ1 = 2y
Restoring force (F) = -(A2y)ρg
= -(2Aρg)y —– (1)
F ∝ -y
Hence oscillations in U-tube is S.H.M.

Question 20.
An air chamber of volume V has a neck area of cross section a into which a ball of mass m just fits and can move up and down without any friction (Fig.). Show that when the ball is pressed down a little and released, it executes SHM. Obtain an expression for the time period of oscillations assuming pressure-volume variations of air to be isothermal (see Fig.).
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 27
Solution:
Consider an air chamber of volume V with a long neck of uniform area of cross-section A, and a frictionless ball of mass m filled smoothly in the neck at position C. The pressure of air below the ball inside the chamber is equal to the atmospheric pressure. Increase the pressure on the ball by a little amount P, so that the ball is depressed to position D, where CD = y.
There will be decrease in volume and hence increases in pressure of air inside the chamber. The decrease in volume of the air inside the chamber.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 28
Here, negative sign shows that the increase in pressure will decrease the volume of air in the chamber.
Now, ρ = \(\frac{-E A y}{V}\)
Due to this excess pressure, the restoring force acting on the ball is
F = P × A = \(\frac{-E A y}{V} \cdot A\)
= \(\frac{-E A^2}{V} y\) —- (1)
Since F ∝ y and negative sign shows that the force is directed towards equilibrium position, if the applied increased pressure is removed from the ball, the ball with start executing linear SHM in the neck of chamber with C as mean position.
In a S.H.M., the restoring force,
F = -Ky —- (2)
Comparing (1) and (2), we have spring factor.
K = \(\frac{E A^2}{V}\)
Here, inertia factor = mass of ball = m
Inertia factor Spring factor
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 29

Note : If the ball oscillates in the neck of chamber under isothermal conditions, then E = P = Pressure of air inside the chamber, when ball is at equilibrium position. If the ball oscillates in the neck of chamber under adiabatic conditions, then E = υP, where v = \(\frac{c_p}{c_v}\).

Question 21.
You are riding in an automobile of mass 3000 kg. Assuming that you are examining the oscillation characteristics of its suspension system. The suspension sags 15 cm when the entire automobile is placed on it. Also, the amplitude of oscillation decreases by 50% during one complete oscillation. Estimate the values of (a) the spring constant k and (b) the damping constant b for the spring and shock absorber system of one wheel, assuming that each wheel supports 750 kg.
Solution:
Here, M = 3000 kg ; x = 0.15 cm ; if K is the spring constant of each spring, then spring constant of 4 springs in parallel to support the whole mass is, K = 4 K.
4 kx = Mg
k = \(\frac{M g}{4 x}\)
= \(\frac{3000 \times 10}{4 \times 0.15}\)
= 5 × 104 N/m.

b) If m is the mass supported by each spring, then m = \(\frac{3000}{4}\) = 750 kg.
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 30

Question 22.
Show that for a particle in linear SHM the average kinetic energy over a period of oscillation equals the average potential energy over the same period.
Solution:
Consider a particle of mass m be executing S.H.M. with period T. The displacement of the particle at an instant t, when time period is noted from the mean position is given by
Y = a sin ωt
∴ Velocity 1 V = \(\frac{\mathrm{dy}}{\mathrm{d} \mathrm{t}}\) = aω cos ωt
K.E., EK = \(\frac{1}{2}\)mv2 = \(\frac{1}{2}\)ma2ω2 cos2 ωt
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 31
Average P.E. over one cycle is
AP Inter 2nd Year Physics Study Material Chapter 8 Oscillations 32

AP Inter 1st Year Physics Study Material Chapter 8 Oscillations

Question 23.
A circular disc of mass 10 kg is suspended by a wire attached to is centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations is found to be 1.5s. The radius of the disc is 15 cm. Determine the torsional spring constant of the wire. (Torsional spring constant a is defined by the relation J = -α θ, where J is the restoring couple and θ the angle of twist).
Solution:
Here, m = 10kg; R = 15 cm = 0.15m; T = 1.55, ∝ = ?
Moment of inertia of disc,
I = \(\frac{1}{2} m R^2\)
= \(\frac{1}{2}\) × 10 × (0.15)2 kgm2
Now T = \(2 \pi \sqrt{\frac{1}{\alpha}}\)
so, α = \(\frac{4 \pi^2 1}{T^2}\)
= 4 × \(\left(\frac{22}{7}\right)^2\) × \(\frac{1}{2}\) × \(\frac{10 \times(0.15)^2}{(1.5)^2}\)
= 1.97Nm/rad.

Question 24.
A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find the acceleration and velocity of the body when the displacement is
(a) 5 cm
(b) 3 cm
(c) 0 cm.
Solution:
Here, r = 5 cm = 0.05 m ; T = 0.25 ;
ω = \(\frac{2 \pi}{\mathrm{T}}\) = \(\frac{2 \pi}{0.2}\)
= 10p rad/s
When displacement is y, then acceleration
A = -ω2y
Velocity, v = ω\(\sqrt{r^2-y^2}\)

Case (a) : When y = x cm = 0.05 m
A = -(10π)2 × 0.05
= -5π2 m/s2
V = 10π\(\sqrt{(0.05)^2-(0.05)^2}\) = 0

Case (b) : When y = 3 cm = 0.03 m
A = -(10π)2 × 0.03
= -3π2 m/s2
V= 10π × \(\sqrt{(0.05)^2-(0.03)^2}\)
= 10π × 0.04
= 0.4π m/s

Case (c): When y = 0,
A = -(10π)2 × 0 = 0
V= 10π\(\sqrt{(0.05)^2-(0)^2}\)
= 10π × 0.05
= 0.5π m/s.

Question 25.
A mass attached to a spring is free to oscillate, with angular velocity ω, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time t = 0. Determine the amplitude of the resulting oscillations in terms of the parameters ω, x0 and V0.
[Hint : Start with the equation x = a cos (ωt + θ) and note that the initial velocity is negative.]
Solution:
x = A cos (ωt + θ) dx
Velocity, \(\frac{\mathrm{dx}}{\mathrm{dt}}\) = -Aω sin (ωt + θ) dt
When t = 0, x = x0, and \(\frac{\mathrm{dx}}{\mathrm{dt}}\) = -V0
∴ x0 = A cos θ
-V0 = -Aω sin θ or A sin θ = \(\frac{V_0}{\omega}\)
Squaring and adding- (i) and (ii), we get
A2(sin2 θ + cos2 θ) = \(\left(\frac{v_0^2}{\omega^2}\right)+x_0^2\)
A = \(\left[\frac{v_0^2}{\omega^2}+x_0^2\right]^{1 / 2}\)