Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(f) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(f)

I.

Question 1.
Verify Rolle’s theorem for the following functions.
i) x² – 1 on [-1, 1]
Solution:
Let f(x) = x² – 1
f is continuous on [-1,1]
since f(-1) = f(1) = 0 and
f is differentiable on [-1, 1]
∴ By Rolle’s theorem ∃ c ∈ (-1, 1) such that f'(c) = 0
f'(x) = 2x = 0
∴ = f'(c) = 0
2c = 0
c = 0
The point c = 0 ∈ (-1, 1)
Then Rolle’s theorem is verified.

ii) sin x – sin 2x on [0, π].
Solution:
Let f(x) = sin x – sin 2x
f is continuous on [0, π]
since f(0) = f(π)= 0 and
f is differentiable on [0, π]
By Rolle’s theorem ∃ c ∈ (0, π)
such that f'(c) = 0
f'(x) = cos x – 2 cos 2x
f'(c) = 0 ⇒ cosc – 2 cos 2c = 0
⇒ cosc – 2(2cos²c – 1):
cosc – 4 cos²c + 2=0 2
4 cos² c – cosc – 2 = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 1

iii) log (x² + 2) – log 3 on [-1, 1]
Solution:
Let f(x) = log (x² + 2) – log 3
f is continuous on [-1, 1]
Since f(-1) = f(1) = 0 and f is
Differentable on [-1, 1]
By Rolle’s theorem ∃ c ∈ (-1, 1)
Such that f'(c) = 0
f'(x) = [latex]\frac{1}{x^{2}+2}[/latex] = (2x)
f'(x) = [latex]\frac{2c}{c^{2}+2}[/latex] = 0
2c = 0
c = 0
c = 0 ∈ (-1, 1).

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f)

Question 2.
It is given that Rolle’s theorem holds for the function f(x) = x³ + bx² + ax on [1, 3] with c = 2t + [latex]\frac{1}{\sqrt{3}}[/latex]. Find the values of a and b.
Solution:
Given f(x) = x³ + bx² + ax
f'(x) = 3x² + 2bx + a
∴ f'(c) = 0 6 ⇔ 3c² + 2bc + a = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 2
⇔ b = 6 and b² – 3a = 3
36 – 3 = 3a
33 = 3a
a = 11
Hence a = 11 and b = -6.

Question 3.
Show that there is no real number k, for which the equation x² – 3x + k = 0 has two distinct roots in [0, 1].
Solution:
Clearly f(0) = f(c)
0 – 0 + k = 1 – 3 + k
0 = -2
Which is not possible
∴ There is no real number K.

Question 4.
Find a point on the graph of the curve y = (x – 3)², where the tangent is parallel to the chord joining (3, 0) and (4, 1).
Solution:
Given points (3, 0) and (4, 1)
The slope of chord = [latex]\frac{1-0}{4-3}[/latex] = 1
Given y = (x- 3)²
[latex]\frac{dy}{dx}[/latex] = 2(x – 3)
⇒ Slope = 2(x – 3)
1 = 2(x – 3)
[latex]\frac{1}{2}[/latex] = x – 3
x = [latex]\frac{1}{2}[/latex] + 3 = [latex]\frac{7}{2}[/latex]
y = (x – 3)² = ([latex]\frac{7}{2}[/latex] – 3)² = [latex]\frac{1}{4}[/latex]
∴ The point on the curve is ([latex]\frac{7}{2}[/latex], [latex]\frac{1}{4}[/latex])

Question 5.
Find a point on the graph of the curve y = x³, where the tangent is parallel to the chord joining (1, 1) and (3, 27).
Solution:
Given points (1, 1) and (3, 27)
Slope of chord = [latex]\frac{27-1}{3-1}[/latex] = 13
Given y = x³
[latex]\frac{dy}{dx}[/latex] = 3x²
⇒ Slope = 3x²
13 = 3x²
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 3
∴ The point on the curve is ([latex]\frac{\sqrt{39}}{3}[/latex], [latex]\frac{13\sqrt{39}}{9}[/latex])

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f)

Question 6.
Find ‘c’, so that f'(c) = [latex]\frac{f(b)-f(a)}{b-a}[/latex] in the following cases.
i) f(x) = x² – 3x – 1, a = [latex]\frac{-11}{7}[/latex], b = [latex]\frac{13}{7}[/latex].
Solution:
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 4
f'(x) = 2x – 3
f'(c) = 2c – 3
Given f'(c)= [latex]\frac{f(b)-f(a)}{b-a}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 5

ii) f(x) = ex ; a = 0, b = 1
Solution:
f(b) = f(1) = e’ = e
f(a) = f(0) = e° = 1
Given f(x) = ex
f'(x) = ex
Given condition f'(c) = [latex]\frac{f(b)-f(a)}{b-a}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 6

Question 7.
Verify the Rolle’s theorem for the function (x² – 1) (x – 2) on [-1, 2]. Find the point in the interval where the derivate vanishes.
Solution:
Let f(x) = (x² – 1) (x- 2) = x³ – 2x² – x + 2
f is continous on [-1, 2]
since f(-1) = f(2) = 0 and f is
Differentiable on [-1, 2]
By Rolle’s theorem ∃ C ∈ (-1, 2)
Let f'(c) = 0
f'(x) = 3x² – 4x – 1
3c² – 4c – 1 = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 7

Question 8.
Verify the conditions of the Lagrange’s mean value theorem for the following functions. In each case find a point ‘c’ in the interval as stated by the theorem
i) x² -1 on [2, 3]
Solution:
Solution:
Let f(x) = x² – 1
f is continous on [2, 3]
and f is differentiable
Given f(x) = x² – 1
f'(x) = 2x
By Lagrange’s mean value theorem ∃ C ∈ (2, 3) such there
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 8

ii) sin x – sin 2x on [0, π]
Solution:
Let f(x) = sin x – sin 2x
f is continuous on [0, π] and f is differentiable
Given f(x) = sin x – sin 2x
f'(x) = cos x – 2 cos 2x
By Lagrange’s mean value than ∃ C ∈ (0, π) such there
f'(c) = [latex]\frac{f(\pi)-f(0)}{\pi-0}[/latex]
cosc – 2 cos 2c = 0
cosc 2(2cos² – 1) = 0
cosc – 4 cos²c + 2 = 0
4 cos² c – cos c – 2 = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 9

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f)

iii) log x on [1, 2].
Solution:
Let f(x) = log x
f is continuous on [1, 2] and f is differentiable
Given f(x) = log x
f'(x) = [latex]\frac{1}{x}[/latex]
By Lagrange’s mean value theorem ∃ c ∈ (1, 2) such that
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(f) 10

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(e) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(e)

I.

Question 1.
At time t, the distance s of a particle moving in a straight line is given by s = -4t² + 2t. Find the average velocity between t = 2 sec and t = 8 sec.
Solution:
s = -4t² + 2t ds
v = [latex]\frac{ds}{dt}[/latex] = -8t + 2 dt
Velocity at t = 2 is v = ([latex]\frac{ds}{dt}[/latex])t=2
v = -16 + 2 = -14 units/sec.
Velocity at t = 8 is v = ([latex]\frac{ds}{dt}[/latex])t=8
v = -64 + 2 = -62
Average velocity = [latex]\frac{-62-14}{2}[/latex] = -38 units/sec.

Question 2.
If y = x4 then find the average rate of change of y between x = 2 and x = 4.
Solution:
y = x4 ⇒ [latex]\frac{dy}{dt}[/latex] = 4x³
([latex]\frac{dy}{dt}[/latex])x=2 = 32
([latex]\frac{dy}{dt}[/latex])x=4 = 256
Average rate of change = [latex]\frac{256+32}{2}[/latex] = 144.

Question 3.
A particle moving along a straight line has the relation s = t³ + 2t + 3, connecting the distance s describe by the particle in time t. Find the velocity and acceleration of the particle of t = 4 sec.
Solution:
s = t³ + 2t + 3
[latex]\frac{ds}{dt}[/latex] = 3t² + 2, velocity v = [latex]\frac{ds}{dt}[/latex] = 3t² + 2
Velocity at t = 4
⇒ ([latex]\frac{ds}{dt}[/latex])t=4 = 48 + 2 = 50 units/sec
v = 3t² + 2
[latex]\frac{dv}{dt}[/latex] = 6t ⇒ a = ([latex]\frac{dv}{dt}[/latex])t=4 = 24 units/sec².

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Question 4.
The distance – time formula for the motion of a particle along a straight line is s = t³ – 9t² + 24t – 18. Find when and where the velocity is zero.
Solution:
Given s = t³ – 9t² + 24t – 18
v = [latex]\frac{ds}{dt}[/latex] = 3t² – 18t + 24
v = 0 ⇒ 3(t² – 6t + 8) = 0
∴ (t – 2) (t – 4) = 0
∴ t = 2 or 4
The velocity is zero after 2 and 4 seconds.

Case (i):
t = 2
s = t³ – 9t² + 24t – 18
= 8 – 36 + 48 – 18 = 56 – 54 = 2

Case (ii) :
t = 4 ; s = t³ – 9t² + 24t – 18
= 64 – 144 + 96 – 18
= 160 – 162 = -2
The particle is at a distance of 2 units from the starting point ‘O’ on either side.

Question 5.
The displacement s of a particle travelling in a straight line in t seconds is given by s = 45t + 11t² – t³. Find the time when the particle comes to rest.
Solution:
s = 45t + 11t² – t³
v = [latex]\frac{ds}{dt}[/latex] = 45 + 22t – 3t²
If a particle becomes to rest
⇒ v = 0 ⇒ 45 + 22t – 3t² = 0
⇒ 3t² – 22t – 45 = 0
⇒ 3t² – 27t + 5t – 45 = 0
⇒ (3t + 5) (t – 9) = 0
∴ t = 9 or t = – [latex]\frac{5}{3}[/latex]
∴ t = 9
∴ The particle becomes to rest at t = 9 seconds.

II.

Question 1.
The volume of a cube is increasing at the rate of 8 cm³/sec. How fast is the surface area increasing when the length of an edge is 12 cm?
Solution:
Suppose ‘a’ is the edge of the cube and v be the volume of the cube.
v = a³ ……………….. (1)
[latex]\frac{dv}{dt}[/latex] = 8 cm³/sec.
a = 12 cm
Surface Area of cube. S = 6a²
[latex]\frac{ds}{dt}[/latex] = 12a[latex]\frac{da}{dt}[/latex] ………….. (2)
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 1

Question 2.
A stone is dropped into a quiet lake and ripples move in circles at the speed of 5 cm/sec. At the instant when the radius of circular ripple is 8 cm., how fast is the enclosed area increases?
Solution:
Suppose r is the value of the outer ripple and A be its area
Area of circle A = πr²
[latex]\frac{dA}{dt}[/latex] = 2πr [latex]\frac{dr}{dt}[/latex]
Given r = 8, [latex]\frac{dr}{dt}[/latex] = 5
[latex]\frac{dA}{dt}[/latex] = 2π (8) (5)
= 80π cm²/sec.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Question 3.
The radius of a circle is increasing at the rate of 0.7 cm/sec. What is the rate of increase of its circumference?
Solution:
[latex]\frac{dr}{dt}[/latex] = 0.7 cm/sec
Circumference of a circle, c = 2πr
[latex]\frac{dc}{dt}[/latex] = 2π [latex]\frac{dr}{dt}[/latex]
= 2π(0.7)
= 1.4π cm/sec.

Question 4.
A balloon which always remains spherical on inflation is being inflated by pumping in 900 cubic centimeters of gas per second. Find the rate at which the radius of balloon increases when the radius in 15 cm.
Solution:
[latex]\frac{dv}{dt}[/latex] = 900 c.c/sec
r = 15 cm
Volume of the sphere v = [latex]\frac{4}{3}[/latex] πr³
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 2

Question 5.
The radius of an air bubble is increasing at the rate of [latex]\frac{1}{2}[/latex] cm/sec. At what rate is the volume of the bubble increasing when the radius is 1 cm.?
Solution:
[latex]\frac{dr}{dt}=\frac{1}{2}[/latex] cm/sec
radius r = 1 cm
Volume sphere v = [latex]\frac{4}{3}[/latex] πr³
[latex]\frac{dv}{dt}[/latex] = 4πr² [latex]\frac{dr}{dt}[/latex]
= 4π(1)²[latex]\frac{1}{2}[/latex]
= 2π cm³/sec.

Question 6.
Assume that an object is launched upward at 980 m/sec. Its position would be given by s = 4.9 t² + 980 t. Find the maximum height attained by the object.
Solution:
s = – 4.9 t² + 980 t
[latex]\frac{ds}{dt}[/latex] = -9.8 t + 980
v = -9.8 t + 980
for max. height, v = 0
-9.8 t + 980 = 0
980 = 9.8 t
[latex]\frac{980}{9.8}[/latex] = t
100 = t
s = -4.9(100)² +980(100)
s = -49000 + 98000
s = 49000 units.

Question 7.
Let a kind of bacteria grow in such a way that at time t sec. there are t(3/2) bacteria. Find the rate of growth at time t = 4 hours.
Solution:
Let g be the amount of growth of bacteria at t then g(t) = t3/2
The growth rate at time t is given by
g'(t) = [latex]\frac{3}{2}[/latex]t1/2
given t = 4hr
g'(t) = [latex]\frac{3}{2}[/latex] (4 × 60 × 60)1/2
= [latex]\frac{3}{2}[/latex] (2 × 60) = 180

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Question 8.
Suppose we have a rectangular aquarium with dimensions of length 8m, width 4 m and height 3 m. Suppose we are tilling the tank with water at the rate of 0.4 m³/sec. How fast is the height of water changing when the water level is 2.5 m?
Solution:
Length of aquarium l = 8 m
Width of aquarium b = 4 m
Height of aquarium h = 3
[latex]\frac{dv}{dt}[/latex] = 0.4 m³/sec.
v = lbh
= 8(4)(3)
= 96
v = lbh
⇒ log v = log l + log b + log h
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 3
Note : Text book Ans. [latex]\frac{1}{80}[/latex] will get when h = 3.

Question 9.
A container is in the shape of an inverted cone has height 8m and radius 6m at the top. If it is filled with water at the rate of 2m³/minute, how fast is the height of water changing when the level is 4m?
Solution:
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 4
h = 8m = OC
r = 6m = AB
[latex]\frac{dv}{dt}[/latex] = 2 m³/minute
∆ OAB and OCD are similar angle then
[latex]\frac{CD}{AB}=\frac{OC}{OA}[/latex]
[latex]\frac{r}{6}=\frac{h}{8}[/latex]
r = h [latex]\frac{3}{4}[/latex]
Volume of cone v = [latex]\frac{1}{3}[/latex]πr²h
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e) 5

Question 10.
The total cost C(x) in rupees associated with the production of x units of an item is given by C(x) 0.007x³ – 0.003x² + 15x + 4000. Find the marginal cost when 17 units are produced.
Solution:
Let m represents the marginal cost, then
M = [latex]\frac{dc}{dx}[/latex]
Hence
M = [latex]\frac{d}{dx}[/latex](0.007x³ – 0.003x² + 15x + 4000)
= (0.007) (3x²) – (0.003) (2x) + 15 /.
∴ The marginal cost at x = 17 is
(M)m=17 = (0.007) 867 – (0.003) (34) + 15
= 6.069-0.102+ 15
= 20.967.

Question 11.
The total revenue in rupees received from the sale of x units of a produce is given by R(x) = 13x² + 26x + 15. Find the marginal revenue when x = 7.
Solution:
Let m denotes the marginal revenue. Then
M = [latex]\frac{dR}{dx}[/latex]
Similar R(x) = 13x² + 26x +15
∴ m = 26x + 26
The marginal revenue at x = 7
(M)x = 7 = 26(7) + 26
= 208.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(e)

Question 12.
A point P is moving on the curve y = 2x². The x co-ordinate of P is increasing at the rate of 4 units per second. Find the rate at which y co-ordinate is increasing when the point is (2, 8).
Solution:
Given y = 2x²
[latex]\frac{dy}{dx}[/latex] = 4x. [latex]\frac{dx}{dt}[/latex]
Given x = 2, [latex]\frac{dx}{dt}[/latex] = 4.[latex]\frac{dy}{dt}[/latex]
= 4(2).4 = 32
y co-ordinate is increasing at the rate of 32 units/sec.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(d) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(d)

I. Find the angle between the curves given below.

Question 1.
x + y + 2 = 0 ; x² + y² – 10y = 0.
Solution:
x + y + 2 = 0 ⇒ x = -(y + 2)
x² + y² – 10y = 0
(y + 2)² + y² – 10y = 0
y² + 4y + 4 + y² – 10y = 0
2y² – 6y + 4 = 0
y² – 3y + 2 = 0
(y + 1) (y – 2) = 0
y = 1 or y – 2
x = – (y + 2)
y = 1 ⇒ x = -(1 + 2) = -3
y = 2 ⇒ x = -(2 + 2) = -4
The points of intersection are P(-3, 1) and Q(-4, 2), equation of the curve is
x² + y² – 10y = 0
Differentiating w.r.to x.
2x + 2y[latex]\frac{dy}{dx}[/latex] – 10 [latex]\frac{dy}{dx}[/latex] = 0
2[latex]\frac{dy}{dx}[/latex](y – 5) = -2x
[latex]\frac{dy}{dx}[/latex] = -[latex]\frac{x}{y-5}[/latex]
f'(x1) = -[latex]\frac{x}{y-5}[/latex]
Equation of the line is x + y + 2 = 0
1 + [latex]\frac{dy}{dx}[/latex] = 0 ⇒ [latex]\frac{dy}{dx}[/latex] = -1
g'(x) = -1

Case (i):
At P(-3, 1), f'(x1) = [latex]\frac{3}{1-5}=-\frac{3}{4}[/latex], g'(x1) = -1
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 1

Case (ii):
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 2

Question 2.
y² = 4x, x² + y² = 5.
Solution:
Eliminating y; we get x² + 4x = 5
x² + 4x – 5 = 0
(x – 1) (x + 5) = 0
x – 1 = 0 or x + 5 = 0
x = 1 or -5
Now y² = 4x
x = 1 ⇒ y² = 4
y = ±2
x = -5 ⇒ y is not real.
∴ Points of interstection of P(1, 2) and Q(1, -2) equation of the first curve is y² = 4x
2y.[latex]\frac{dy}{dx}[/latex] = 4
[latex]\frac{dy}{dx}[/latex] = [latex]\frac{4}{2y}[/latex]
f(x) = [latex]\frac{2}{y}[/latex]
Equation of the second curve is x² + y² = 5 dy
2x + 2y [latex]\frac{dy}{dx}[/latex] = 0 dx
2.[latex]\frac{dy}{dx}[/latex] = -2x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 3

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d)

Question 3.
x² + 3y = 3 ; x² – y² + 25 = 0.
Solution:
x² = 3 – 3y; x² – y² + 25 = 0
3 – 3y – y² + 25 = 0
y² + 3y – 28 = 0
(y – 4) (y + 7) = 0
y – 4 = 0 (or) y + 7 = 0
y = 4 or – 7
x² = 3 – 3y
y = 4 ⇒ x² = 3 – 12 = – 9
⇒ x is not real
y = -7 ⇒ x² = 3 + 21 = 24
⇒ x = ± √24 = ± 2√6
Points of intersection are
P(2√6, -7), Q(-2√6, -7)
Equation of the first cur ve is x² + 3y = 3
3y = 3 – x²
3.[latex]\frac{dy}{dx}[/latex] = -2x
[latex]\frac{dy}{dx}[/latex] = -[latex]\frac{2x}{3}[/latex] i.e, f'(x1) = -[latex]\frac{2x}{3}[/latex]
Equation of the second curve is
x² – y² + 25 = 0
y² = x² + 25
2y.[latex]\frac{dy}{dx}[/latex] = 2x ⇒ [latex]\frac{dy}{dx}=\frac{2x}{2y}=\frac{x}{y}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 4
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 5

Question 4.
x² = 2(y + 1), y = [latex]\frac{8}{x^{2}+4}[/latex].
Solution:
x² = 2([latex]\frac{8}{x^{2}+4}[/latex] + 1) = [latex]\frac{16+2x^{2}+8}{x^{2}+4}[/latex]
x²(x² + 4) = 2x² + 24
x4 + 4x² – 2x² – 24 = 0
x4 + 2x² – 24 = 0
(x² + 6) (x² – 4) = 0
x² = -6 or x² = 4
x² = -6 ⇒ x is not real
x² = 4 ⇒ x = ±2
y = [latex]\frac{8}{x^{2}+4}=\frac{8}{4+4}=\frac{8}{8}[/latex] = 1
∴ Points of intersection are P(2, 1) and Q(-2, 1)
Equation of the first curve is x² = 2(y + 1)
2x = 2.[latex]\frac{dy}{dx}[/latex] ⇒ [latex]\frac{dy}{dx}[/latex] = x
f'(x1) = x1
Equation of the second curve is y = [latex]\frac{8}{x^{2}+4}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 6
∴ The given curves cut orthogonally
i.e., θ = [latex]\frac{\pi}{2}[/latex]
At Q (-2, -1),f'(x1) = -2, g'(x1) = [latex]\frac{32}{64}=\frac{1}{2}[/latex]
f'(x1) g'(x1) = -2 × [latex]\frac{1}{2}[/latex] = -1
∴ The given curves cut orthogonally
⇒ θ = [latex]\frac{\pi}{2}[/latex]

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d)

Question 5.
2y² – 9x = 0, 3x² + 4y = 0 (in the 4th quadrant).
Solution:
2y² – 9x = 0 ⇒ 9x = 2y²
x = [latex]\frac{2}{9}[/latex]y²
3x² + 4y = 0
⇒ 3.[latex]\frac{4}{8}[/latex] y4 + 4y = 0
[latex]\frac{4y^{2}+108y}{27}[/latex] = 0
4y(y³ + 27) = 0
y = 0 or y³ = -27 ⇒ y = -3
9x = 2y² 2 × 9 ⇒ x = 2
Point of intersection (in 4th quadrant) is P(2, -3)
Equation of the first curve is 2y² = 9x
4y[latex]\frac{dy}{dx}[/latex] = 9 ⇒ [latex]\frac{dy}{dx}=\frac{9}{4y}[/latex]
f'(x1) = [latex]\frac{9}{4y}[/latex]
At P(2, -3), f'(x1) = [latex]\frac{9}{-12}=-\frac{3}{4}[/latex]
Equation of the second curve is
3x² + 4y = 0
4y = -3x²
4.[latex]\frac{dy}{dx}[/latex] = -6x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 7

Question 6.
y² = 8x, 4x² + y = 32
Solution:
4x² + 8x = 32 ⇒ x² + 2x = 8
x² + 2x – 8 = 0
(x – 2) (x + 4) = 0
x = 2 or -4
y² = 8x
x = -4 ⇒ y² is not real
x = 2 ⇒ y² = 16 ⇒ y = ±4
Point of intersection are P(2, 4), Q(2, -4)
Equation of the first curve is y² = 8x
2y.[latex]\frac{dy}{dx}[/latex] = 8 ⇒ [latex]\frac{dy}{dx}=\frac{8}{2y}=\frac{4}{y}[/latex]
f'(x1) = [latex]\frac{4}{y}[/latex]
Equation of the second curve is
4x² + y² = 32
8x + 2y.[latex]\frac{dy}{dx}[/latex] = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 8

Question 7.
x²y = 4, y(x² + 4) = 8.
Solution:
x²y = 4 ⇒ x = [latex]\frac{4}{y}[/latex]
y(x² + 4) = 8
y([latex]\frac{4}{y}[/latex] + 4y) = 8
y[latex]\frac{(4+4y)}{y}[/latex] = 8
4y – 4 ⇒ y = 1
x² = 4 ⇒ x = ±2
Points of intersection are P(2, 1), Q(-2, 1)
x²y = 4 ⇒ y = [latex]\frac{4}{x^{2}}[/latex]
[latex]\frac{dy}{dx}[/latex] = -[latex]\frac{8}{x^{3}}[/latex] ⇒ f'(x1) = -[latex]\frac{8}{x^{3}}[/latex]
y(x² + 4) = 8 ⇒ y = [latex]\frac{8}{x^{2}+4}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 9
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 10

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d)

Question 8.
Show that the curves 6x² – 5x + 2y = 0 and 4x² + 8y² = 3 touch each other at ([latex]\frac{1}{2}[/latex], [latex]\frac{1}{2}[/latex])
Solution:
Equation of the first curve is
6x² – 5x + 2y = 0
2y = 5x – 6x²
2.[latex]\frac{dy}{dx}[/latex] = 5 – 12x
[latex]\frac{dy}{dx}=\frac{5-12x}{2}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 11
Equation of the second curve is 4x² + 8y² = 3
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(d) 12
∴ f'(x1) = g'(x1)
The given curves touch each other at P([latex]\frac{1}{2}[/latex], [latex]\frac{1}{2}[/latex]).

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(c) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(c)

I.

Question 1.
Find the lengths of subtangent and sub-normal at a point of the curve
Solution:
Equation of the curve is y = b. sin [latex]\frac{x}{a}[/latex]
[latex]\frac{dy}{dx}[/latex] = b. cos [latex]\frac{x}{a}.\frac{1}{a}=\frac{b}{a}[/latex]. cos [latex]\frac{x}{a}[/latex]
Length of the sub-tangent = |[latex]\frac{y_{1}}{f^{\prime}\left(x_{1}\right)}[/latex]|
= [latex]\frac{b \cdot \sin \frac{x}{a}}{\frac{b}{a} \cdot \cos \frac{x}{a}}=\left|a \cdot \tan \frac{x}{a}\right|[/latex]
Length of the sub-normal = |y1, f'(x1)|
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 2

Question 2.
Show that the length of sub normal at any point on the curve xy = a2 varies as the cube of the ordinate of the point.
Solution:
Equation of the curve is xy = a²
y = [latex]\frac{a^{2}}{x}[/latex]
[latex]\frac{dy}{dx}=\frac{-a^{2}}{x^{2}}[/latex]
Length of the sub-normal = |y1, f’ (x1)|
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 3
[latex]\frac{y_{1}^{3}}{a^{2}}[/latex] ∝ y31 = cube of the ordinate.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c)

Question 3.
Show that at any point (x, y) on the curve y = bex/a, the length of the sub¬tangent is a constant and the length of the sub normal is [latex]\frac{y^{2}}{a}[/latex].
Solution:
Equation of the curve is y = b.ex/a
[latex]\frac{a^{2}}{x}[/latex] = b.ex/a.[latex]\frac{1}{a}=\frac{y}{a}[/latex]
Length of the sub tangent
= |[latex]\frac{y_{1}}{f^{\prime}\left(x_{1}\right)}[/latex]| = [latex]\frac{y_{1}}{\left(\frac{y_{1}}{a}\right)}[/latex] = a = constant
Length of the sub-normal
= |y1f'(x1)| = |y1[latex]\frac{y_{1}}{a}[/latex]| = [latex]\frac{y_{1}^{2}}{a}[/latex].

II.

Question 1.
Find the value of k so that the length of the sub normal at any point on the curve xyk = ak + 1 is a constant.
Solution:
Equation of the curve is x.yk = ak + 1
Differentiating w.r.to x
x.k.yk-1 [latex]\frac{dy}{dx}[/latex] + yk.1 = 0
x.k.yk-1 [latex]\frac{dy}{dx}[/latex] = -yk
[latex]\frac{dy}{dx}=\frac{-y^{k}}{k \cdot x \cdot y^{k-1}}=-\frac{y}{kx}[/latex]
Length of the sub-normal = |y1f'(x1|
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 4
Length of the sub-normal is constant at any point on the curve is independent of x1 and y1
∴ [latex]\frac{y_{1}^{k+2}}{k \cdot a^{k+1}}[/latex] is independent of x1, y1
⇒ k + 2 = 0 ⇒ k = -2

Question 2.
At any point t on the curve x = a (t + sin t), y = a (1 – cos t), find the lengths of tangent, normal, sub tangent and sub
normal.
Solution:
Equation of the curve is x = a (t + sin t), y = a (1 – cost)
[latex]\frac{dx}{dt}[/latex] = a (1 + cos t), [latex]\frac{dy}{dt}[/latex] = a. sin t
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 5
Length of the tangent = |y1|[latex]\sqrt{1+\frac{1}{\left[f^{\prime}\left(x_{1}\right)\right]^{2}}}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 6
Length of the normal = |y1|[latex]\sqrt{1+\left[f\left(x_{1}\right)\right]^{2}}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 7
Length of the sub tangent.
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 8
= |a (2 sin t/2. cos t/2|
= |a. sin t|
Length of the sub normal
= |y1.f'(x1)| = |a(1 – cos t).[latex]\frac{\sin t / 2}{\cos t / 2}[/latex]|
= |2a sin² t/2. tan t/2|
= |2a sin² t/2. tan t/2|

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c)

Question 3.
Find the lengths of normal and sub normal at a point on the curve y = [latex]\frac{a}{2}[/latex] (ex/a + e-x/a).
Solution:
Equation of the curve is y = [latex]\frac{a}{2}[/latex] (ex/a + e-x/a)
= a. cosh ([latex]\frac{x}{a}[/latex])
Length of the normal = |y1|[latex]\sqrt{1+\left[f\left(x_{1}\right)\right]^{2}}[/latex]
= |a.cosh [latex]\frac{x}{a}[/latex]|[latex]\sqrt{1+\sinh ^{2} \frac{x}{a}}[/latex]
= a. cosh [latex]\frac{x}{a}[/latex]. cosh [latex]\frac{x}{a}[/latex] = a. cosh² [latex]\frac{x}{a}[/latex]
Length of the sub normal = |y1 f'(x1)|
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 9

Question 4.
Find the lengths of subtangent, sub normal at a point t on the curve x = a (cos t + t sin t), y=a (sin t – t cos t)
Solution:
Equations of the curve are x = a (cos t + t sin t)
[latex]\frac{dx}{dt}[/latex] = a (- sin t + sin t +1 cost) = at cos t
y = a (sin t – t cos t)
[latex]\frac{dy}{dt}[/latex] = a (cos t – cos t +1 sin t) = a t sin t
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 10
Length of the sub tangent
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(c) 11
= |a cot t (sin t – t cos t)|
Length of the sub-normal = |y1.f'(x1)|
= |a (sin t – t cos t) tan t|
= |a tan t (sin t – t cos t)|

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(b) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(b)

I.

Question 1.
Find the slope of the tangent to the curve
y = 3x4 – 4x at x = 4.
Solution:
Equation of the curve is y = 3x4 – 4x
[latex]\frac{dy}{dx}[/latex] = 12x³ – 4 dx
At x = 4, slope of the tangent = 12 (4)³ – 4
= 12 × 64 – 4
= 768 – 4
= 764

Question 2.
Find the slope of the tangent to the curve
y = [latex]\frac{x-1}{x-2}[/latex] x ≠ 2 at x = 10.
Solution:
Equation of the curve is
y = [latex]\frac{x-1}{x-2}[/latex]
= [latex]\frac{x-2+1}{x-2}[/latex]
= 1 + [latex]\frac{1}{x-2}[/latex]
[latex]\frac{dy}{dx}[/latex] = 0 + [latex]\frac{(-1)}{(x-2)^{2}}=\frac{1}{(x-2)^{2}}[/latex]
At x = 10, slope of the tangent = [latex]\frac{1}{(10-2)^{2}}[/latex]
= -[latex]\frac{1}{64}[/latex]

Question 3.
Find the slope of the tangent to the curve y = x³ – x + 1 at the point whose x co-ordinate is 2.
Solution:
Equation of the curve is y = x³ – x + 1
[latex]\frac{dy}{dx}[/latex] = 3x² – 1
x = 2
Slope of the tangent at (x – 2) is
3(2)² – 1 = 3 x 4 – 1
= 12 – 1 = 11

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 4.
Find the slope of the tangent to the curve y = x³ – 3x + 2 at the point whose x co-ordinate is 3.
Solution:
Equation of the curve is y = x³ – 3x + 2
[latex]\frac{dy}{dx}[/latex] = 3x² – 3
At x = 3, slope of the tangent = 3(3)² – 3
= 27 – 3 = 24

Question 5.
Find the slope of the normal to the curve
x = a cos³ θ, y = a sin³ θ at θ = [latex]\frac{\pi}{4}[/latex].
Solution:
x = a cos³ θ
[latex]\frac{d x}{d \theta}[/latex] = a(3 cos² θ) (-sin θ)
= -3a cos² θ. sin θ
y = sin³ θ
[latex]\frac{d y}{d \theta}[/latex] = a (3 sin² θ) cos θ
= 3a sin² θ cos θ
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 1
At θ = [latex]\frac{\pi}{4}[/latex], slope of the tangent = tan [latex]\frac{\pi}{4}[/latex] = -1
Slope of the normal = – [latex]\frac{1}{m}[/latex] = 1.

Question 6.
Find the slope of the normal to the curve
x = 1 – a sin θ, y = b cos θ at θ = [latex]\frac{\pi}{2}[/latex].
Solution:
x = 1 – a sin θ
[latex]\frac{d x}{d \theta}[/latex] = – a cos θ
y = b cos² θ dy
[latex]\frac{d y}{d \theta}[/latex] = b(2 cos θ) (- sin θ) = -2b cos θ sin θ
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 2
[latex]\frac{2b}{a}[/latex].sin θ
Slope of the normal = [latex]\frac{1}{m}=\frac{a}{2b \sin \theta}[/latex]
At θ = [latex]\frac{\pi}{2}[/latex], slope of the normal = [latex]\frac{-a}{2 b \sin \frac{\pi}{2}}[/latex]
= [latex]\frac{-a}{2b.1}[/latex]
= [latex]\frac{-a}{2b}[/latex]

Question 7.
Find the points at which the tangent to the curve y = x3 – 3×2 – 9x + 7 is parallel to the x-axis.
Solution:
Equation of the curve is y = x³ – 3x² – 9x + 7
[latex]\frac{dy}{dx}[/latex] = 3x² – 6x – 9 dx
The tangent is parallel to x-axis.
Slope of the tangent = 0
3x² – 6x – 9 = 0
x² – 2x – 3 = 0
(x – 3) (x + 1) = 0
x = 3 or -1
y = x³ – 3x² – 9x + 7
x = 3 ⇒ y = 27 – 27 – 27 + 7 = -20
x = -1, y = -1 – 3 + 9 + 7 = 12
The points required are (3, -20), (-1, 12).

Question 8.
Find a point on the curve y = (x – 2)² at which the tangent is parallel to the chord joining the points (2, 0) and (4, 4).
Solution:
Equation of the curve is y = (x – 2)²
[latex]\frac{dy}{dx}[/latex] = 2(x – 2)
Slope of the chord joining A(2, 0) and B(4, 4)
= [latex]\frac{4-0}{4-2}=\frac{4}{2}[/latex] = 2.
The tangent is parallel to the chord.
2(x – 2) = 2
x – 2 = 1
x = 3
y = (x – 2)² = (3 – 2)² = 1
The required point is P(3, 1).

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 9.
Find the point on the curve
y = x³ – 11x + 5 at which the tangent is y = x – 11.
Solution:
Equation of the curve is y = x³ – 11x + 5
[latex]\frac{dy}{dx}[/latex] = 3x² – 11
The tangent is y = x – 11
Slope of the tangent = 3x² – 11 = 1
3x² = 12
x² = 4
x = ±2

y = x – 11
x = 2 ⇒ y = 2 – 11 = -9
The points on the curve is P(2, -9).

Question 10.
Find the equations of all lines having slope 0 which are tangents to the curve y = [latex]\frac{1}{x^{2}-2x+3}[/latex].
Solution:
Equation of the curve is y = [latex]\frac{1}{x^{2}-2x+3}[/latex]
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 3
Given slope of the tangent = 0
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 4
Equation the point is P(1, [latex]\frac{1}{2}[/latex])
Slope of the tangent = 0
Equation of the required tangent is
y – [latex]\frac{1}{2}[/latex] = 0(x – 1)
⇒ 2y – 1 = 0

II.

Question 1.
Find the equations of tangent and normal to the following curves at the points indicated against.
i) y = x4 – 6x³ + 13x² – 10x + 5 at (0, 5).
Solution:
[latex]\frac{dy}{dx}[/latex] = 4x³ – 18x² + 26x – 10
At x = 0,
Slope of the tangent = 0 – 0 + 0 -10 = -10
Equation of the tangent is y – 5 = -10(x – 0)
= -10x
10x + y – 5 = 0
Slope of the normal = – [latex]\frac{1}{m}=\frac{1}{10}[/latex]
Equation of the normal is y – 5 = [latex]\frac{1}{10}[/latex] (x – 0)
10y – 50 = x ⇒ x – 10y + 50 = 0

ii) y = x³ at (1, 1).
Solution:
[latex]\frac{dy}{dx}[/latex] = 3x²
At (1, 1), slope of the tangent = 3 (1)² = 3
Equation of the tangent at P(1, 1) is
y – 1 = 3(x – 1)
= 3x – 3
3x – y – 2 = 0
Slope of the normal = – [latex]\frac{1}{m}=-\frac{1}{3}[/latex]
Equation of the normal is y – 1 = [latex]-\frac{1}{3}[/latex](x – 1)
3y – 3 = -x + 1
x + 3y – 4 = 0

iii) y = x² at (0, 0).
Solution:
Equation of the curve is y = x²
[latex]\frac{dy}{dx}[/latex] = 2x
At P(0, 0), slope of the tangent = 2.0 = 0
Equation of the tangent is y – 0 = 0 (x – 0)
⇒ y = 0
The normal is perpendicular to the tangent.
Equation of the normal is x = k.
The normal passes through (0, 0) ⇒ k = 0
Equation of the normal is x = 0.

iv) x = cos t, y = sin t at t = [latex]\frac{\pi}{4}[/latex].
Solution:
[latex]\frac{dx}{dt}[/latex] = -sin t, [latex]\frac{dy}{dt}[/latex] = cos t
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 5
Equation of the tangent is
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 6
Slope of the normal = -[latex]\frac{1}{m}=\frac{-1}{-1}[/latex] = 1
Equation of the normal is y [latex]\frac{1}{\sqrt{2}}[/latex] = x – [latex]\frac{1}{\sqrt{2}}[/latex]
i.e., x – y = 0

v) y = x² – 4x + 2 at (4, 2).
Solution:
Equation of the curve is y = x² – 4x + 2
[latex]\frac{dy}{dx}[/latex] = 2x – 4
At P(4, 2), slope of the tangent =2.4 – 4
= 8 – 4 = 4
Equation of the tangent at P is
y – 2 = 4(x – 4)
= 4x – 16
4x – y – 14 = 0
Slope of the normal = -[latex]\frac{1}{m}=-\frac{1}{4}[/latex]
Equation of the normal at P is
y – 2 = [latex]-\frac{1}{4}[/latex] (x – 4)
⇒ 4y – 8 = -x + 4
⇒ x + 4y – 12 = 0

vi) y = [latex]-\frac{1}{1+x^{2}}[/latex] at (0, 1)
Solution:
Equation of the curve is y = [latex]-\frac{1}{1+x^{2}}[/latex]
[latex]\frac{dy}{dx}[/latex] = [latex]-\frac{1}{(1+x^{2})^{2}}[/latex]
At (0, 1), x = 0, slope of the tangent = 0
Equation of the tangent at P(0, 1) is
y – 1 = 0(x – 0)
y = 1
The normal is perpendicular to the tangent.
Equation of the normal can be taken at x = 10.
The normal passes through P(0, 1) ⇒ 0 = k
Equation of the normal at P is x = 0.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 2.
Find the equations of tangent and normal to the curve xy = 10 at (2, 5).
Solution:
Equation of the curve is xy = 10.
y = [latex]\frac{10}{x}[/latex]; [latex]\frac{dy}{dx}=\frac{10}{x^{2}}[/latex]
At P(2, 5), f'(x1) = -[latex]\frac{10}{4}=-\frac{5}{2}[/latex]
Equation of the tangent is
y – y1 = f'(x1) (x – x1)
y – 5 = – [latex]\frac{5}{2}[/latex] (x – 2)
2y – 10 = -5x + 10
5x + 2y – 20 = 0
Equation of the normal is
y – y1 = [latex]\frac{1}{f'(x_{1})}[/latex](x – x1)
y – 5 = [latex]\frac{5}{2}[/latex] (x – 2)
5y – 25 = 2x – 4
i.e., 2x – 5y + 21 = 0.

Question 3.
Find the equations of tangent and normal to the curve y = x³ + 4x² at (-1, 3).
Solution:
Equation of the curve is y = x³ + 4x²
[latex]\frac{dy}{dx}[/latex] = 3x² + 8x
At P(-1, 3),
Slope of the tangent
= 3(-1)² + 8(-1)
= 3 – 8 = -5

Equation of the tangent at P(-1, 3) is
y – y1 = f'(x1) (x – x1)
y – 3 = -5(x + 1) = -5x – 5
5x + y + 2 = 0
Equation of the nonnal at P is
y – y1 = -[latex]\frac{1}{f'(x_{1})}[/latex] (x – x1)
y – 3 = [latex]\frac{1}{5}[/latex] (x + 1)
5y – 15 = x + 1
x – 5y + 16 = 0

Question 4.
If the slope of the tangent to the curve x² – 2xy + 4y = 0 at a point on it is -[latex]\frac{3}{2}[/latex], then find the equations of tangent and normal at that point.
Solution:
Equation of the curve is
x² – 2xy + 4y = 0 ………… (1)
Differentiating w.r.to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 7
2x – 2y = -3x + 6; 5x – 2y = 6
2y = 5x – 6 ……. (2)
P(x, y) is a point on (1)
x² – x(5x – 6) + 2(5x – 6) = 0
x² – 5x² + 6x + 10x – 12 = 0
-4x² + 16x – 12 = 0
-4(x² – 4x + 3) = 0
x² + 4x + 3 = 0
(x – 1) (x – 3) = 0
x – 1 = 0 or x – 3 = 0
∴ x = 1 or x = 3

Case (i): x = 1
Substituting in (1)
1 – 2y + 4y = 0
2y = -1 ⇒ y = -[latex]\frac{1}{2}[/latex]
The required point is P(1, -[latex]\frac{1}{2}[/latex])
Equation of the tangent is
y + [latex]\frac{1}{2}[/latex] = -[latex]\frac{3}{2}[/latex](x – 1)
[latex]\frac{2y+1}{2}=\frac{-3(x-1)}{2}[/latex]
2y + 1 = -3x + 3
3x + 2y – 2 = 0
Equation of the normal isy + [latex]\frac{1}{2}=\frac{2}{3}[/latex](x – 1)
[latex]\frac{2y+1}{2}=\frac{2}{3}[/latex] (x – 1)
6y + 3 = 4x – 4
4x – 6y – 7 = 0

Case (ii) : x = 3
Substituting in (1), 9 – 6y + 4y = 0
2y = 9 ⇒ y = [latex]\frac{9}{2}[/latex]
∴ The required point is (3, [latex]\frac{9}{2}[/latex])
Equation of the tangent is
y – [latex]\frac{9}{2}=-\frac{3}{2}[/latex] (x – 3)
[latex]\frac{2y-9}{2}=\frac{-3(x-3)}{2}[/latex]
2y – 9 = -3x + 9
3x + 2y- 18 = 0
Equation of the normal is y – [latex]\frac{9}{2}=\frac{2}{3}[/latex] (x – 3)
[latex]\frac{2y-9}{2}=\frac{2(x-3)}{3}[/latex]
6y – 27 = 4x – 12
i.e., 4x – 6y + 15 = 0.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 5.
If the slope of the tangent to the curve y = x log x at a point on it is [latex]\frac{3}{2}[/latex], then find the equations of tangent and normal at that point.
Solution:
Equation of the curve is y = x log x
[latex]\frac{dy}{dx}[/latex] = x. [latex]\frac{1}{x}[/latex] + log x.1 = 1 + log x.
Given 1 + log x = [latex]\frac{3}{2}[/latex]
loge x =[latex]\frac{1}{2}[/latex] ⇒ x = e½ = √e
y = √e . log .√e = [latex]\frac{\sqrt{e}}{2}[/latex]
The required point is P (√e, [latex]\frac{\sqrt{e}}{2}[/latex])
Equation of the tangent is y [latex]\frac{\sqrt{e}}{2}=\frac{3}{2}[/latex](x – √e)
[latex]\frac{2 y-\sqrt{e}}{2}=\frac{3(x-\sqrt{e})}{2}[/latex]
2y – √e = 3x – 3 √e
3x – 2y – 2√e = 0
Equation of the normal is
y – y1 = – [latex]\frac{1}{f'(x_{1})}[/latex](x – x1)
y – [latex]\frac{\sqrt{e}}{2}=-\frac{2}{3}[/latex](x – √e)
[latex]\frac{2 y-\sqrt{e}}{2}=-\frac{2}{3}[/latex](x – √e)
6y – 3√e = -4x + 4√e
i.e., 4x + 6y – 7√e =0

Question 6.
Find the tangent and normal to the curve y = 2e-x/3 at the point where the curve meets the Y-axis.
Solution:
Equation of the curve is y = 2e-x/3
Equation of Y-axis is x = 0
y = 2.e° = 2.1 = 2
Required point is P(0, 2)
[latex]\frac{dy}{dx}[/latex] = 2(-[latex]\frac{1}{3}[/latex]) . e-x/3
When x = 0, slope of the tangent = -[latex]\frac{2}{3}[/latex] .e° = [latex]\frac{-2}{3}[/latex]
Equation of the tangent at P is
y – y1 = f'(x1) (x – x1)
y – 2 = -[latex]\frac{2}{3}[/latex] (x – 0)
3y – 6 = -2x
2x + 3y – 6 = 0
Equation of the normal is
y – y1 = -[latex]\frac{1}{f'(x_{1})}[/latex] (x – x1
y – 2 = [latex]\frac{3}{2}[/latex] (x – 0)
2y – 4 = 3x; 3x – 2y + 4 = 0

III.

Question 1.
Show that the tangent at P(x1, y1) on the curve √x + √y = √a is yy1 + xx1 = a½.
Solution:
Equation of the curve is √x + √y = √a
Differentiating w.r.to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 8
Slope of the tangent at P(x1 y1) = -[latex]\frac{\left(y_{1}\right)^{1 / 2}}{\left(x_{1}\right)^{1 / 2}}[/latex]
Equation of the tangent at P is
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 9
= x1½ + y1½
x. x1 + y. y1 = a½
(P is a point on the curve)
Equation of the tangent at P is
y. y1 + x. x1 = a½

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 2.
At what points on the curve x² – y² = 2, the slopes of the tangents are equal to 2?
Solution:
Equation of the curve is x² – y² = 2 ………. (1)
Differentiating w.r.to x
2x – 2y.[latex]\frac{dy}{dx}[/latex] = 0 ⇒ [latex]\frac{dy}{dx}=\frac{x}{y}[/latex]
Slope of the tangent = [latex]\frac{dy}{dx}[/latex] = 2
∴ [latex]\frac{x}{y}[/latex] = 2 ⇒ x = 2y
Substituting in (1), 4y² – y² = 2
3y² = 2
y ² = [latex]\frac{2}{3}[/latex] ⇒ y = ± [latex]\sqrt{\frac{2}{3}}[/latex]
x = 2y = ± 2 [latex]\sqrt{\frac{2}{3}}[/latex]
∴ The required points are
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 10

Question 3.
Show that the curves x² + y² = 2 and 3x² + y² = 4x have a common tangent at the point (1, 1).
Solution:
Equation of the first curve is x² + y² = 2
Differentiating w.r.to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 11
At P (1, 1) slope of the tangent = [latex]\frac{-1}{1}[/latex] = -1
Equation of the second curve is 3x² + y² = 4x.
Differentiating w.r.to x, 6x + 2y.[latex]\frac{dy}{dx}[/latex] = 4
2y.[latex]\frac{dy}{dx}[/latex] = 4 – 6x
[latex]\frac{dy}{dx}=\frac{4-6x}{2y}=\frac{2-3x}{y}[/latex]
At P( 1, 1) slope of the tangent = [latex]\frac{2-3}{1}[/latex] = -[latex]\frac{1}{1}[/latex] = -1
The slope of the tangents to both the curves at P( 1, 1) are same and pass through the same point (1, 1)
∴ The given curves have a common tangent at P (1, 1)

Question 4.
At a point (x1, y1) on the curve x³ + y³ = 3axy, show that the tang;ent is
(x1² – ay1) x+ (y1² – ax1)y = ax1y1
Solution:
Equation of the curve is x³ + y³ = 3axy
Differentiating w. r. to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 12
Slope of the tangent P(x1, y1) = -[latex]\frac{\left(x_{1}^{2}-a y_{1}\right)}{\left(y_{1}^{2}-a x_{1}\right)}[/latex]
Equation of the tangent at P(x1, y1) is
y(y – y1) = -[latex]\frac{\left(x_{1}^{2}-a y_{1}\right)}{\left(y_{1}^{2}-a x_{1}\right)}[/latex](x – x1)
y(y1² – ax1) – y1(y1² – ax1) = – x(x1² – ay1) + x1(x1² – ay1)
x1(x1² – ay1) + y1(y1² – ax1)
= x1(x1² – ay1) + y1(y1² – ax1)
= x1³ – ax1y1 + y1³ – ax1y1
= x1³ + y1³ – 2ax1y1
3ax1y1 – 2ax1y1 (P is a point on the curve)
= ax1y1

Question 5.
Show that the tangent at the point P (2, -2) on the curve y (1 – x) = x makes intercepts of equal length on the co-ordinate axes and the normal at P passes through the origin.
Solution:
Equation of the curve is
y (1 – x) = x
y = [latex]\frac{x}{1-x}[/latex]
Differentiating w.r. to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 13
Equation of the tangent at P is
y + 2 = +(x – 2) = x – 2; x – y = 4
[latex]\frac{x}{4}-\frac{y}{4}[/latex] ⇒ [latex]\frac{x}{4}-\frac{y}{(-4)}[/latex] = 1
∴ a = 4, b = – 4
∴ The tangent makes equal intercepts on the co-ordinate axes but they are in opposite in sign. Equation of the normal at P is
y – y1 = [latex]\frac{1}{f'(x_{1})}[/latex] (x – x1)
y + 2 = -(x – 2)= -x + 2
x + y = 0
There is no constant term in the equation.
∴ The normal at P(2, -2) passes through the origin.

Question 6.
If the tangent at any point on the curve x2/3 + y2/3 = a2/3 intersects the coordinate axes in A and B then show that length AB is a constant.
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 14
Solution:
Equation of the curve is
x2/3 + y2/3 = a2/3
Differentiating w.r. to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 15
Equation of the tangent at P (x1, y1) is
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 16
AB = a = constant.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b)

Question 7.
If the tangent at any point P on the curve xm yn = am+n (mn ≠ 0) meets the co-ordinate axes in A, B, then show that AP: PB is a constant.
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 17
Solution:
Equation of the curve is xm.yn = am+n
Differentiating w.r. to x
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 18
Slope of the tangent at P(x1, y1) = -[latex]\frac{my_{1}}{nx_{1}}[/latex]
Equation of the tangent at P is
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 19
Co-ordinates of A are [[latex]\frac{m+n}{m}[/latex].x1, o] and B are [0, [latex]\frac{m+n}{m}[/latex].y1]
Let P divide AB in the ratio k : l
Co-ordinates of P are
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 20
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(b) 21
Dividing (1) by (2) [latex]\frac{l}{k}=\frac{m}{n}[/latex] ⇒ [latex]\frac{k}{l}=\frac{n}{m}[/latex]
∴ P divides AB in the ratio n : m
i.e., AP : PB = n : m = constant.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a)

Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(a) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Applications of Derivatives Solutions Exercise 10(a)

I.

Question 1.
Find ∆y and dy for the following functions for the values of x and ∆x which are shown against each of the functions,
i) y = x² + 3x + 6, x = 10, ∆x = 0.01.
Solution:
∆y = f(x + ∆x) – f(x)
= f(10.01)-f(10)
= E(10.01)² + 3(10.01) + 6] – [10² + 3(10) + 6]
= 100.2001 +30.03 + 6 – 100 – 30 – 6
= 0.2001 + 0.03
= 0.2301
y = x² + 3x + 6
dy = (2x + 3) dx
= (2.10 + 3) (0.01) = 0.23

ii) y = ex + x, x = 5 and ∆x = 0.02
Solution:
∆y = f(x + ∆x) – f(x)
= f(5 + 0.02) – f(5)
= f(5.02) – f(5)
= (e5.02 + 5.02) – (e5 + 5)
= e5.02 – e5 + 0.02
= e5 (e0.02 – 1) + 0.02
dy = f'(x) ∆x = (ex + 1) ∆x
= (e5 + 1) (0.02)

iii) y = 5x² + 6x + 6, x = 2 and ∆x = 0.001
Solution:
∆y’= f(x + ∆x) – f(x)
= f(2 +0.001) – f(2)
= f(2.001) – f(2)
= (5(2.001)² + 6(2.001) + 6) – (5(2)² + 6(2) +6)
= 20.0200 + 12.0060 + 6 – 20 – 12 – 6
= 0.026005
dy = f'(x) ∆x = (10x + 6) ∆x
= (26) (0.001) = 0.0260.

iv) y = 2 [latex]\frac{1}{x+2}[/latex] x = 8 and ∆x = 0.02
Solution:
f(x) = [latex]\frac{1}{x+2}=\frac{1}{10}[/latex] = 0.1000
f(x + ∆x) = [latex]\frac{1}{x+\Delta x+2}=\frac{1}{10+0.02}=\frac{1}{10.02}[/latex] = 0.0998
∆y = f(x + ∆x) – f(x)
= [latex]\frac{1}{x+\Delta x+2}-\frac{1}{1+x}=\frac{1}{10.02}=\frac{1}{10}[/latex]
= 0.0998 003992 – 0.1000 = – 0.0001996
dy = f'(x) ∆x = [latex]\frac{-1}{1+x^{2}}[/latex] ∆x
= [latex]\frac{-1}{100}[/latex](0.02) = -0.0002

v) y = cos (x), x = 60° and ∆x = 1°
Solution:
∆y = f(x + ∆x) – f(x)
= cos (x + ∆x) – cos x
= cos (60° + 1°) – cos 60°
= cos 61° – cos 60°
= 0.4848 – [latex]\frac{1}{2}[/latex] = 0.4848 – 0.5 = – 0.0152
dy = f'(x) ∆x
= — sin x ∆x
= – sin 60°(1°) = [latex]\frac{-\sqrt{3}}{2}[/latex] (0.0174)
= – (0.8660) (0.0174) = – 0.0151.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a)

II.

Question 1.
Find the approximations of the following.
i) √82
Solution:
82 = 81 + 1 = 81(1 + [latex]\frac{1}{81}[/latex])
∴ x = 81, ∆x = 1, f(x) = 77
dy = f'(x). ∆x = [latex]\frac{1}{2\sqrt{x}}[/latex]. ∆x = [latex]\frac{1}{2\sqrt{81}}[/latex].1
= [latex]\frac{1}{18}[/latex] = 0.0555
f(x + δx) – f(x) ≅ dy
f(x + δx) ≅ f(x) + dy
= √81 + 0.0555
= 9 + 0.0555
i.e., √82 = 9.0555 = 9.056

ii) [latex]\sqrt[3]{65}[/latex]
Solution:
Let x = 64, ∆x = 1, f(x) = [latex]\sqrt[3]{x}[/latex]
f'(x) = [latex]\frac{1}{3}[/latex]x-2/3
f(x + ∆x) ≅ f(x) + f'(x)∆x
[latex]\sqrt[3]{65}[/latex] ≅ [latex]\sqrt[3]{x}[/latex] + [latex]\frac{1}{3}[/latex]x-2/3 ∆x
≅ [latex]\sqrt[3]{65}+\frac{1}{3}[/latex](4)-2/3(I)
≅ 4 + [latex]\frac{1}{3}[/latex]([latex]\frac{1}{16}[/latex])
≅ 4 + [latex]\frac{1}{48}[/latex]
≅ [latex]\frac{192+1}{48}[/latex]
≅ [latex]\frac{193}{48}[/latex] ≅ 4.0208

iii) [latex]\sqrt{25.001}[/latex]
Solution:
Letx = 25, ∆x- 0.001
f(x) = √x
dy = f'(x) ∆x
= [latex]\frac{1}{2\sqrt{x}}[/latex] ∆x = [latex]\frac{1}{2\sqrt{25}}[/latex] (0.001) = [latex]\frac{0.001}{10}[/latex] = 0.0001
f(x + ∆x) ≅ f(x) + dy
≅ √25 + 0.0001
≅ 5.0001

iv) [latex]\sqrt[3]{7.8}[/latex]
Solution:
Let x = 8, ∆x = -0.2, f(x) = [latex]\sqrt[3]{x}[/latex]
dy = f'(x). ∆x
= [latex]\frac{1}{3}[/latex]x-2/3. ∆x = [latex]\frac{1}{3x^{2/3}}[/latex] . ∆x
dy = [latex]\frac{1}{3(8)^{2/3}}[/latex](-0.2)
= – [latex]\frac{1}{3}[/latex]
[latex]=-\frac{0.2}{3 \times 4}=-\frac{0.2}{12}[/latex]
f(x + δx) – (x) ≅ dy
f(x + δx) ≅ f(x) + dy
= [latex]\sqrt[3]{8}[/latex] – 0.0166
= 2 – 0.0166
= 1.9834
∴ [latex]\sqrt[3]{7.8}[/latex] = 1.9834

v) sin (62°)
Solution:
Let x = 60°, ∆x = 2°, f(x) = sin x
dy = f'(x) ∆x
= cosx ∆x
= cos 60° ∆x
= [latex]\frac{1}{2}[/latex] (2°)
= [latex]\frac{1}{2}[/latex] 2(0.0174) = 0.0174

f(x + ∆x) ≅ f(x) + dy
≅ sin 60° + 0.0174
≅ [latex]\frac{\sqrt{3}}{2}[/latex] + 0.0174
≅ 0.8660 + 0.0174
≅ 0.8834

vi) cos (60° 5′)
Solution:
Let x = 60°, Ax = 5′ = [latex]\frac{5}{60}[/latex]×[latex]\frac{\pi}{180}=\frac{\pi}{2160}[/latex]
= 0.001453
f(x) = cos x
dy = f'(x) ∆x = – sin x ∆x
= – sin 60° (0.001453)
= [latex]\frac{-\sqrt{3}}{2}[/latex] (0.001453)
= – 0.8660 (0.001453)
= -0.001258

f(x + ∆x) ≅ f(x) + dy
≅ cos x + dy
≅ cos 60° + 0.001258
≅ 0.5 – 0.001258
≅ 0.4987.

vii) [latex]\sqrt[4]{17}[/latex]
Solution:
Let x – 16, ∆x = 1, f(x) = [latex]\sqrt[4]{x}[/latex] = x¼
dy = f'(x) ∆x
= [latex]\frac{1}{4}[/latex] x¼-1 ∆x
= [latex]\frac{1}{4}[/latex] x-3/4 ∆x
= [latex]\frac{1}{4}[/latex] (16)-3/4 (I)
= [latex]\frac{1}{32}[/latex] = 0.0312

f(x + ∆x) ≅ f(x) + dy
≅ [latex]\sqrt[4]{x}[/latex] + 0.0312
≅ 2 + 0.0312
≅ 2.0312

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a)

Question 2.
If the increase in the side of a square is 4% then find the approximate percentage of increase in the area of the square.
Solution:
Let x be the side and A be the area of square
A = x²
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a) 1

Question 3.
The radius of a sphere is measured as 14 cm. Later it was found that there is an error 0.02 cm in measuring the radius. Find the approximate error in surface of the sphere.
Solution:
Let s be the surface of the sphere
r’ = 14, ∆r = 0.02
s = 4πr²
∆s = 4π 2r ∆r
∆s = 8π (14) (0.02)
= 2.24π
= 2.24 (3.14)
= 7.0336.

Question 4.
The diameter of a sphere is measured to be 40 cm. If an error of 0.02 cm is made in it, then find approximate errors in volume and surface area of the sphere.
Solution:
Let v be the value of sphere
v = [latex]\frac{4}{3}[/latex] πr³ = [latex]\frac{4 \pi}{3}[/latex][[latex]\frac{d}{2}[/latex]]³
= [latex]\frac{4 \pi}{3} \frac{d^{3}}{8}=\frac{\pi d^{3}}{6}[/latex]
∆v = [latex]\frac{\pi}{6}[/latex]3d² ∆d
= [latex]\frac{\pi}{2}[/latex] (40)² (0.02)
= π(1600) (0.01)
= 16π.

Surface Area s = 4πr²
s = 4π [[latex]\frac{d}{2}[/latex]]²
s = 4π[latex]\frac{d^{2}}{4}[/latex]
s = πd²
∆s = π2d ∆d
= π2d (40) (0.02)
= 1.6π.

Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a)

Question 5.
The time t, of a complete oscillation of a simple pendulum of length l is given by t = [latex]2 \pi \sqrt{\frac{1}{g}}[/latex] where g is gravitational constant. Find the approximate percen-tage of error in t when the percentage of error l is 1%.
Sol. Given t = [latex]2 \pi \sqrt{\frac{1}{g}}[/latex]
log t = log 2π + [latex]\frac{1}{2}[/latex] {(log l – log)}
Inter 1st Year Maths 1B Applications of Derivatives Solutions Ex 10(a) 2

Inter 2nd Year Maths 2B Differential Equations Important Questions

Students get through Maths 2B Important Questions Inter 2nd Year Maths 2B Differential Equations Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2B Differential Equations Important Questions

Question 1.
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = ex – y + x2 e-y [Mar. 06; May 05]
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 1

Question 2.
x[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] – y = 2x2 sec22x [May 11]
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 2

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 3.
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y tan x = sin x. [T.S. Mar. 16]
Solution:
I.F. = [latex]e^{\int \tan x d x}[/latex] = elog sec x = sec x
y.sec x = [latex]\int[/latex] sin x . sec x dx = [latex]\int[/latex] tan x dx
= log sec x + c

Question 4.
cos x . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y sin x = sec2x [Mar. 14]
Solution:
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + tan x . y = sec3x
I.F. = e[latex]\int[/latex]tan x dx = elog sec x = sec x
y . sec x = [latex]\int[/latex] sec4x dx = [latex]\int[/latex] (1 + tan2 x) sec2 x
dx = tan x + [latex]\frac{\tan ^{3} x}{3}[/latex] + c

Question 5.
(x + y + 1)[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 1.
Solution:
[latex]\frac{\mathrm{dx}}{\mathrm{dy}}[/latex] = x + y + 1
[latex]\frac{\mathrm{dx}}{\mathrm{dy}}[/latex] = x + y + 1
I.F. = e[latex]\int[/latex] -dy = e-y
x . e-y = [latex]\int[/latex] e-y (y + 1)dy
= – (y + 1) . e-y + [latex]\int[/latex] e-y . dy
= – (y + 1) e-y – e-y
= – (y + 2) e-y + c
x = – (y + 2) + c. e-y

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 6.
Find the order and degree of r
[latex]\frac{\mathrm{d}^{3} \mathrm{~y}}{\mathrm{dx}^{3}}[/latex] – 3 ([latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex]) – ex = 4. [Mar. 14]
Solution:
The equation is a polynomial in [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] and [latex]\frac{\mathrm{d}^{3} \mathrm{~y}}{\mathrm{dx}^{3}}[/latex].
The exponent of [latex]\frac{\mathrm{d}^{3} \mathrm{~y}}{\mathrm{dx}^{3}}[/latex] is 2.
Hence the degree is 2.
[latex]\frac{\mathrm{d}^{3} \mathrm{~y}}{\mathrm{dx}^{3}}[/latex] is the highest order derivative occuring in the equation.
Order of the equation is 3.

Question 7.
x[latex]\frac{1}{2}[/latex]([latex]\frac{\mathrm{d}^{2} \mathrm{~y}}{\mathrm{dx}^{2}}[/latex])[latex]\frac{1}{3}[/latex] + x . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y = 0 has order 2 and degree 1. Prove. [T.S. Mar. 15]
Solution:
The given equation can be written as
Inter 2nd Year Maths 2B Differential Equations Important Questions 3
∴ The order of the equation is 2 and its degree is 1.

Question 8.
Find the order and degree of [latex]\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}\right)^{\frac{6}{5}}[/latex] = 6y [Mar. 16; May 11]
Solution:
Given equation is [latex]\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}\right)^{\frac{6}{5}}[/latex] = 6y
i.e., [latex]\frac{\mathrm{d}^{2} \mathrm{~y}}{\mathrm{dx}^{2}}[/latex] + ([latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex])3 = (6y)[latex]\frac{5}{6}[/latex]
Order = 2, degree = 1

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 9.
Solve [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{x(2 \log x+1)}{\sin y+y \cos y}[/latex] [Mar. 08]
Solution:
Given equation can be written as
(sin y + y cos y) dy = x(2 log x + 1) dx
[latex]\int[/latex] sin y dy + [latex]\int[/latex] y cos y dy = [latex]\int[/latex] 2x log x dx + [latex]\int[/latex] x dx
[latex]\int[/latex] sin y dy + y sin y – [latex]\int[/latex] sin y dy = x2 log x – [latex]\int[/latex] x2 . [latex]\frac{1}{x}[/latex] dx + [latex]\int[/latex] x dx + c
y sin y = x2 log x + c

Question 10.
(xy2 + x) dx + (yx2 + y) dy = 0. [A.P. Mar. 15, 07]
Solution:
(xy2 + x) dx + (yx2 + y) dy = 0
x(y2 + 1) dx + y (x2 + 1) dy = 0
Dividing with (1 + x2) (1 + y2)
[latex]\frac{x d x}{1+x^{2}}[/latex] + [latex]\frac{y d x}{1+y^{2}}[/latex] = 0
Integrating
[latex]\int \frac{x d x}{1+x^{2}}+\int \frac{y d y}{1+y^{2}}=0[/latex]
[latex]\frac{1}{2}[/latex][(log (1 + x2) + log (1 + y2)] = log c
log (1 + x2) (1 + y2) = 2 log c = log c2
Solution is(1 + x2) (1 + y2) = k when k = c2.

Question 11.
sin-1 ([latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex]) = x + y [Mar. 07]
Solution:
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = sin (x + y)
x + y = t
1 + [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{\mathrm{dt}}{\mathrm{dx}}[/latex]
[latex]\frac{\mathrm{dt}}{\mathrm{dx}}[/latex] – 1 = sin t
[latex]\frac{\mathrm{dt}}{\mathrm{dx}}[/latex] = 1 + sin t
[latex]\frac{d t}{1+\sin t}[/latex] = dx
Integrating both sides we get
[latex]\int \frac{d t}{1+\sin t}=\int d x[/latex]
[latex]\int \frac{1-\sin t}{\cos ^{2} t} d t=x+c[/latex]
[latex]\int[/latex] sec2 t dt = [latex]\int[/latex] tan t . sec t dt = x + c
tan t – sec t = x + c
⇒ tan (x + y) – sec (x + y) = x + c

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 12.
(x2 – y2) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = xy [May 11]
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 4
= log y + c
[latex]\frac{-x^{2}}{2 y^{2}}[/latex] = (log y + c)
-x2 = 2y2 (c + log y)
⇒ Solution is x2 + 2y2 (c + log y) = 0.

Question 13.
Solve : x dy = (y + x cos2 [latex]\frac{y}{x}[/latex]) dx.
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 5

Question 14.
(2x + y + 1) dx + (4x + 2y – 1) dy = 0 [T.S. Mar. 15]
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 6
2v + log (v – 1) = 3x + c
2v – 3x + log (v – 1) = c
2(2x + y) – 3x + log (2x + y – 1) = c
4x + 2y – 3x + log (2x + y – 1) = c
Solution is x + 2y + log (2x + y – 1) = c

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 15.
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y tan x = cos3x [May 11]
Solution:
I.F. = e[latex]\int[/latex] tan x dx = elog sec x = sec x
y . sec x = [latex]\int[/latex] sec x. cos3 x dx
= [latex]\int[/latex] cos2x dx
= [latex]\frac{1}{2}[/latex] [latex]\int[/latex] (1 + cos 2x) dx
= [latex]\frac{1}{2}[/latex] (x + [latex]\frac{sin2x}{2}[/latex]) + c
[latex]\frac{2 y}{\cos x}[/latex] = x + sin x . cos x + c
Solution is 2y = x cos x + sin x . cos2 x + c . cos x^

Question 16.
(1 + x2) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y = etan-1 x [May 07] [A.P. Mar. 16] [T.S. Mar. 15]
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 7

Question 17.
Solve (1 + y2)dx = (tan-1y – x)dy. [A.P. Mar. 15]
Solution:
Given [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{\tan ^{-1} y-x}{1+y^{2}}[/latex]
Inter 2nd Year Maths 2B Differential Equations Important Questions 8
Inter 2nd Year Maths 2B Differential Equations Important Questions 9

Question 18.
(x2 – y2)dx – xy dy = 0 [May 06]
Solution:
(x2 – y2)dx – xy dy = 0
(x2 – y2)dx = xy . dy
Inter 2nd Year Maths 2B Differential Equations Important Questions 10
-[latex]\frac{1}{4}[/latex] [log (x2 – 2y2) – log x2] = log x + log c
-[latex]\frac{1}{4}[/latex] log (x2 – 2y2) + [latex]\frac{1}{4}[/latex] . 2 log x = log x + log c
-[latex]\frac{1}{4}[/latex] log (x2 – 2y2) = [latex]\frac{1}{2}[/latex] log x + log c
– log (x2 – 2y2) = – 2 log x – 4 log c
log (x2 – 2y2) = – 2 log x + log k where
k = [latex]\frac{1}{c^{4}}[/latex] = log [latex]\frac{\mathrm{k}}{\mathrm{x}^{2}}[/latex]
x2 – 2y2 = [latex]\frac{\mathrm{k}}{\mathrm{x}^{2}}[/latex]
Solution is x2 (x2 – 2y2) = k

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 19.
[latex]\frac{d y}{d x}=\frac{3 y-7 x+7}{3 x-7 y-3}[/latex] [T.S. Mar. 16]
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 11
Inter 2nd Year Maths 2B Differential Equations Important Questions 12
= 3ln (v – 1) – 3ln (v + 1) – 7ln (v + 1) – 7ln (v – 1)
14ln x – ln c = – 10 ln (v + 1) – 4 ln (v – 1)
ln (v + 1)5 + ln (v – 1)2 + ln x7 = ln c
(v + 1)5 . (v – 1)2 . x7 = c
([latex]\frac{y}{x}[/latex] + 1)5 ([latex]\frac{y}{x}[/latex] – 1)2 . x7 = c
(y – x)2 (y + x)5 = c
[y – (x – 1)]2 (y + x – 1)5 = c
Solution is [y – x + 1]2 (y + x – 1)5 = c.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 20.
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] (x2y3 + xy) = 1 [Mar. 11]
Solution:
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = xy + x2y3
This is Bernoulli’s equation
x-2 . [latex]\frac{\mathrm{dx}}{\mathrm{dy}}[/latex] – [latex]\frac{1}{x}[/latex] . y = y3
Inter 2nd Year Maths 2B Differential Equations Important Questions 13
Inter 2nd Year Maths 2B Differential Equations Important Questions 14

Question 21.
Form the differential equation corresponding to y = A cos 3x + B sin 3x, where A and B are parameters. [AP Mar. 15]
Solution:
We have y = A cos 3x + B sin 3x
Differentiating w.r.to x
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = -3A sin 3x + 3B cos 3x
Differentiating again w.r.to. x
[latex]\frac{\mathrm{d}^{2} \mathrm{~y}}{\mathrm{dx}^{2}}[/latex] = -9A cos 3x – 9B sin 3x
= – 9(A cos 3x + B sin 3x)
= -9y .
is [latex]\frac{\mathrm{d}^{2} \mathrm{~y}}{\mathrm{dx}^{2}}[/latex] + 9y = 0.
Alternate method:
Eliminating A, B from the equation
y = A cos 3x + B sin 3x
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = – 3A sin 3x + 3B sin cos 3x
Inter 2nd Year Maths 2B Differential Equations Important Questions 15
This is the required differential equation.

Question 22.
Solve (x2 + y2) dx = 2xy dy [A.P. Mar. 16]
Solution:
Given equation can be written as
Inter 2nd Year Maths 2B Differential Equations Important Questions 16
log cx(1 – v2 = log 1
cx (1 – v2) = 1
cx (1 – [latex]\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}[/latex]) = 1
c(x2 – y2) = x is the required solution.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 23.
Give the solution of x sin2 [latex]\frac{y}{x}[/latex] dx = y dx – x dy which passes through the point (1, [latex]\frac{\pi}{4}[/latex]). [Mar. 14]
Solution:
The given equation can be written as
Inter 2nd Year Maths 2B Differential Equations Important Questions 17
The given curve passes through (1, [latex]\frac{\pi}{4}[/latex])
cot [latex]\frac{\pi}{4}[/latex] = log 1 + c
1 = 0 + c ⇒ c = 1
Solution is cot [latex]\frac{y}{x}[/latex] = log x + 1

Question 24.
Find the order and degree of the differential equation [latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] = – p2y.
Solution:
The given equation is a polynomial equation in [latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex]
Hence the degree is 1
[latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] is the highest order derivative occuring in the equation.
Its order is 2.

Question 25.
Find the order and degree of
([latex]\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}[/latex])2 – 3 ([latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex])2 – ex = 4 [Mar. 14]
Solution:
The equation is a polynomial in [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] and [latex]\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}[/latex].
The exponent of [latex]\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}[/latex] is 2.
Hence the degree is 2.
[latex]\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}[/latex] is the highest õrder derivative occuring in the equation.
Order of the equation is 3.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 26.
x[latex]\frac{1}{2}[/latex]([latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex])[latex]\frac{1}{3}[/latex] + x . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y = 0 has order 2 and degree 1. Prove. [T.S. Mar. 15]
Solution:
The given equation can be written as
x[latex]\frac{1}{2}[/latex]([latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex])[latex]\frac{1}{3}[/latex] = -[x . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y]
Cubing both sides
x[latex]\frac{3}{2}[/latex]([latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex]) = -[x . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y]3
∴ The order of the equation is 2 and its degree is 1.

Question 27.
Find the order and degree of [latex]\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}\right)^{\frac{6}{5}}[/latex] = 6y [A.P. Mar. 16; May 11]
Solution:
Given equation is [latex]\left(\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}\right)^{\frac{6}{5}}[/latex] = 6y
i.e., [latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] + ([latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex])3 = (6y)[latex]\frac{5}{6}[/latex]
Order = 2; degree = 1

Question 28.
Find the order of the differential equation corresponding to y = c(x – c)2, where c is an arbitrary constant.
Solution:
The given differential equation is
y = c(x – c)2
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 2c(x – c)
∴ Order of the differential equation is 1.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 29.
Find the order of the differential equation corresponding to y = Aex + Be3x + Ce5x; (A, B, C being parameters) is a solution.
Solution:
Required differential equation is obtained by eliminating A, B, C from y,
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex], [latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex], [latex]\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}[/latex]
Highest order deviation = [latex]\frac{\mathrm{d}^{3} \mathrm{y}}{\mathrm{dx}^{3}}[/latex]
Order of the differential equation = 3.

Question 30.
Form the differential equation corresponding to y = cx – 2c2, where c is a parameter.
Solution:
Given y = cx – 2c2 ………………. (1)
Differentiating (1) w.r.to
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = c
Substituting in (1), required differential equation is
y = x . ([latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex]) – 2([latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex])2

Question 31.
Form the differential equation corresponding to y = A cos 3x + B sin 3x, where A and B are parameters. [A.P. Mar. 15]
Solution:
We have y = A cos 3x + B sin 3x
Differentiating w.r.to x
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = -3A sin 3x + 3B cos 3x
Differentiating again w.r.to. x
[latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] = -9A cos 3x – 9B sin 3x
= -9(A cos 3x + B sin 3x)
= -9y
is [latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] + 9y = 0

Inter 2nd Year Maths 2B Differential Equations Important Questions

Alternate Method:
Eliminating A, B from the equation
y = A cos 3x + B sin 3x
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = -3A sin 3x = 3B sin cos 3x
[latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] = -9A cos 3x – 9B sin 3x
We get [latex]\left|\begin{array}{ccc}
y & -\cos 3 x & -\sin 3 x \\
\left(\frac{d y}{d x}\right) & 3 \sin 3 x & -3 \cos 3 x \\
\left(\frac{d^{2} y}{d x^{2}}\right) & 9 \cos 3 x & 9 \sin 3 x
\end{array}\right|[/latex] = 0
y(27 sin2 3x + 27 cos2 3x) – (-9 sin 3x. cos 3x + 9 cos 3x. sin 3x) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + (3 cos2 3x + 3 sin2 3x) [latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] = 0
= 27y + 3 .[latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] = 0 or [latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] + 9y = 0
This is the required differential equation.

Question 32.
Form the differential equation corresponding to the family of circles of radius r given by (x – a)2 + (y – b)2 = r2, where a and b are parameters.
Solution:
We have (x – a)2 + (y – b)2 = r2 ………………… (1)
Differentiating (1) w.r.to x
2(x – a) + 2(y – b) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 0 ……………….. (2)
Differentiating (2) w.r.to. x
1 + (y – b) [latex]\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}[/latex] + ([latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex])2 = 0 ……………… (3)
From (2) (x – a) = -(y – b) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex]
Substituting in (1), we get
Inter 2nd Year Maths 2B Differential Equations Important Questions 18
i.e., [latex]r^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{3}[/latex]
Which is the required differential equation.

Question 33.
Form the differential equation corresponding to the family of circles passing through the origin and having centres on Y-axis.
Solution:
The equation of the family of all circles passing through the origin and having centres on Y—axis is
x2 + y2 + 2hy = 0 …………………. (1)
Where h is a parameter
Differentiating (1) w.r. to x
2x + 2y . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + 2h . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 0
or x + y . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + h . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 0
-(x + y . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex]) = h. [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex]
h = [latex]\frac{-\left(x+y \cdot \frac{d y}{d x}\right)}{\frac{d y}{d x}}[/latex]
Substituting in (1)
We get x2 + y2 – 2y [latex]\frac{\left(x+y \cdot \frac{d y}{d x}\right)}{\frac{d y}{d x}}[/latex] = 0
x2 . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y2 . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] – 2xy – 2y2 . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 0
or (x2 – y2) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] – 2xy = 0
This is the required differential equation.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 34.
Express the following differential equations in the form f(x) dx + g(y) dy = 0.
i) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1+\mathrm{y}^{2}}{1+\mathrm{x}^{2}}[/latex]
Solution:
⇒ [latex]\frac{d y}{1+y^{2}}=\frac{d x}{1+x^{2}}[/latex]
[latex]\frac{d x}{1+x^{2}}-\frac{d y}{1+y^{2}}[/latex] = 0

ii) y – x [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = a (y2 + [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex])
Solution:
y – x . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = ay2 + a. [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex]
y – ay2 = (x + a) . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex]
[latex]\frac{d x}{x+a}=\frac{d y}{y-a y^{2}}[/latex]

iii) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = ex-y + x2 e-y
Solution:
Multiplying in the ey
ey . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = ex + x2
ey . dy = (ex + x2) dx
(ex + x2) dx – ey . dy = 0

iv) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + x2 = x2 e3y
Solution:
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = x2 . e3y – x2 = x2(e3y – 1)
[latex]\frac{d y}{e^{3 y}-1}[/latex] = x2 dx ⇒ x2 dx – [latex]\frac{d y}{e^{3 y}-1}[/latex] = 0
or x2dx + [latex]\frac{1}{\left(1-e^{3 y}\right)}[/latex] . dy = 0

Question 35.
Find the general solution of
x + y[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 0.
Solution:
Given equation is x + y . [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 0
x . dx + y . dy = 0
Integrating [latex]\frac{x^{2}}{2}[/latex] + [latex]\frac{y^{2}}{2}[/latex] = c
or x2 + y2 = 2 c = c’

Question 36.
Find the general solution of [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = ex+y.
Solution:
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = ex+y = ex . ey
[latex]\frac{d y}{e^{y}}[/latex] = ex dx
[latex]\int[/latex] e-y dy = [latex]\int[/latex] ex dx
e – e-y = ex
or ex + e-y = c is the required solution.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 37.
Solve y2 – x [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = a(y + [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex])
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 19
Inter 2nd Year Maths 2B Differential Equations Important Questions 20

Question 38.
Solve [latex]\frac{d y}{d x}=\frac{y^{2}+2 y}{x-1}[/latex]
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 21

Question 39.
Solve [latex]\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}[/latex] [Mar. 08]
Solution:
Given equation can be written as
(sin y + y cos y) dy = x(2 log x + 1) dx
[latex]\int[/latex] sin y dy + [latex]\int[/latex] y cos y dy = [latex]\int[/latex] 2x log x dx + [latex]\int[/latex] x dx
[latex]\int[/latex] sin y dy + y sin y – [latex]\int[/latex] sin y dy = x2 log x – [latex]\int[/latex] x2 . [latex]\frac{1}{x}[/latex] dx + [latex]\int[/latex] x dx + c
y sin y = x2 log x + c

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 40.
Find the equation of the curve whose slope, at any point, (x, y) is [latex]\frac{y}{x^{2}}[/latex] and which satisfies the condition y = 1 when x = 3.
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 22

Question 41.
Solve y(1 + x) dx + x(1 + y) dy = 0
Solution:
The given equation can be written as
[latex]\frac{(1+x)}{x}[/latex] dx + [latex]\frac{(1+y)}{y}[/latex] . dy = 0
[latex]\int[/latex] (1 + [latex]\frac{1}{x}[/latex])dx + [latex]\int[/latex] (1 + [latex]\frac{1}{y}[/latex]) dy = 0
x + log x + y + log y = c
x + y + log (xy) = c is the required solution.

Question 42.
Solve [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = sin (x + y) + cos (x + y)
Solution:
Put x + y = t
Inter 2nd Year Maths 2B Differential Equations Important Questions 23
x = log (1 + tan [latex]\frac{t}{2}[/latex]) + c
But t = x + y
Solution is x = log (1 + tan [latex]\frac{x+y}{2}[/latex]) + c

Question 43.
Solve (x – y)2 [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = a2
Solution:
Put x – y = t
Inter 2nd Year Maths 2B Differential Equations Important Questions 24
Inter 2nd Year Maths 2B Differential Equations Important Questions 25

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 44.
Solve [latex]\sqrt{1+x^{2}} \sqrt{1+y^{2}}[/latex] dx + xy dy = 0
Solution:
Given equation can be written as
Inter 2nd Year Maths 2B Differential Equations Important Questions 26
Inter 2nd Year Maths 2B Differential Equations Important Questions 27
Inter 2nd Year Maths 2B Differential Equations Important Questions 28

Question 45.
Solve [latex]\frac{d y}{d x}=\frac{x-2 y+1}{2 x-4 y}[/latex]
Solution:
Put x – 2y = t
Inter 2nd Year Maths 2B Differential Equations Important Questions 29

Question 46.
Solve [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\sqrt{y-x}[/latex]
Solution:
Put y – x = t2
Inter 2nd Year Maths 2B Differential Equations Important Questions 30

Question 47.
Solve [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + 1 = ex+y
Solution:
Put t = x + y
[latex]\frac{\mathrm{dt}}{\mathrm{dx}}[/latex] = 1 + [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = et
[latex]\int \frac{d t}{e^{t}}=\int d x[/latex]
[latex]\int[/latex] e-t dt = [latex]\int[/latex] dx
-e-t = x + c
x + e-t + c = 0
Solution is x + e-(x+y) + c = 0

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 48.
Solve [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = (3x + y + 4)2
Solution:
Put t = 3x + y + 4
[latex]\frac{\mathrm{dt}}{\mathrm{dx}}[/latex] = 3 + [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = 3 + t2
[latex]\frac{\mathrm{dt}}{\mathrm{t}^{3}+3}[/latex] = dx
[latex]\int \frac{d t}{t^{2}+3}=\int d x[/latex]
[latex]\frac{1}{\sqrt{3}}[/latex] tan-1 ([latex]\frac{t}{\sqrt{3}}[/latex]) = x + c
Solution is [latex]\frac{1}{\sqrt{3}}[/latex] tan-1 ([latex]\frac{3 x+y+4}{\sqrt{3}}[/latex]) = x + c

Question 49.
Solve [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] – x tan (y – x) = 1
Solution:
Put y – x = t
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] – 1 = [latex]\frac{\mathrm{dt}}{\mathrm{dx}}[/latex]
[latex]\frac{\mathrm{dt}}{\mathrm{dx}}[/latex] = x tan t + 1 – 1 = x tan t
[latex]\frac{\mathrm{dt}}{\tan \mathrm{t}}[/latex] = x dx
[latex]\int[/latex] cot dt = [latex]\int[/latex] x dx
log |sin | = [latex]\frac{x^{2}}{2}[/latex] + c
Solution is log |sin (y – x)| = [latex]\frac{x^{2}}{2}[/latex] + c

Question 50.
Show that f(x, y) = 1 + ex/y is a homogeneous function of x and y.
Solution:
f(kx, xy) = 1 + ekx/ky = 1 + ex/y = f(x, y)
f(x, y) is a homogeneous function degree 0.

Question 51.
Show that f(x, y) = x[latex]\sqrt{x^{2}+y^{2}}[/latex] – y2 is a homogeneous function of x and y.
Solution:
f(kx, ky) = kx[latex]\sqrt{k^{2} x^{2}+k^{2} y^{2}}[/latex] – k2y2.
= k2 (x[latex]\sqrt{x^{2}+y^{2}}[/latex] – y2) = k2 f(x, y)
f(x, y) is a homogeneous function of degree 2.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 52.
Show that f(x, y) = x – y log y + y log x is a homogeneous function of x and y.
Solution:
f(kx, ky) = kx – ky. log ky + ky log (kx)
= k(x – y log (ky) + y log kx)
= k(x – y log k – y log y + y log k + y log x)
= k(x – y log y + y log x)
= k. f(x, y)
f(x, y) is a homogeneous function of degree 1.

Question 53.
Express (1 + ex/y)dx + ex/y (1 – [latex]\frac{x}{y}[/latex]) dy = 0 in the form [latex]\frac{\mathrm{dx}}{\mathrm{dy}}[/latex] = F ([latex]\frac{x}{y}[/latex])
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 31

Question 54.
Express (x[latex]\sqrt{x^{2}+y^{2}}[/latex] – y2) dx + xy dy = 0 in the form [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = F ([latex]\frac{x}{y}[/latex])
Solution:
Given equation is
Inter 2nd Year Maths 2B Differential Equations Important Questions 32

Question 55.
Express [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{y}{x+y e^{\frac{-2 x}{y}}}[/latex] in the form [latex]\frac{\mathrm{dx}}{\mathrm{dy}}[/latex] = F ([latex]\frac{x}{y}[/latex])
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 33

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 56.
Solve [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{y^{2}-2 x y}{x^{2}-x y}[/latex]
Solution:
The given equation is a homogeneous equation.
Put y = vx
Inter 2nd Year Maths 2B Differential Equations Important Questions 34
[latex]\log v \sqrt{2 v-3}=-3 \log \frac{x}{c}=\log \frac{c^{3}}{x^{3}}[/latex]
Inter 2nd Year Maths 2B Differential Equations Important Questions 35

Question 57.
Solve (x2 + y2) dx = 2xy dy [A.P. Mar. 16]
Solution:
Given equation can be written as
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{x^{2}+y^{2}}{2 x y}[/latex]
This is a homogeneous function
Put y = vx
Inter 2nd Year Maths 2B Differential Equations Important Questions 36
-log (1 – v2) = log x + log c
= log cx
log cx + log (1 – v2) = 0
log cx(1 – v2) = log 1
cx (1 – v2) = 1
cx (1 – [latex]\frac{\mathrm{y}^{2}}{\mathrm{x}^{2}}[/latex]) = 1
c(x2 – y2) = x is the required solution.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 58.
Solve xy2 dy – (x3 + y3) dx = 0.
Solution:
Given equation is xy2 dy = (x3 + y2) dx
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{x^{3}+y^{3}}{x y^{2}}[/latex]
This is a homogeneous equation.
Put y = vx
Inter 2nd Year Maths 2B Differential Equations Important Questions 37

Question 59.
Solve [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{x^{2}+y^{2}}{2 x^{2}}[/latex]
Solution:
This is a homogeneous equation.
Inter 2nd Year Maths 2B Differential Equations Important Questions 38

Question 60.
Solve x sec ([latex]\frac{y}{x}[/latex]) . (y dx + x dy) = y cosec ([latex]\frac{y}{x}[/latex]) . (x dy – y dx)
Solution:
This given equation can be written as
Inter 2nd Year Maths 2B Differential Equations Important Questions 39
Inter 2nd Year Maths 2B Differential Equations Important Questions 40
log([latex]\frac{\sin v}{v}[/latex]) = log cx2
[latex]\frac{\sin v}{v}[/latex] = cx2
[latex]\frac{x}{y}[/latex] sin ([latex]\frac{y}{x}[/latex]) = cx2
Solution is sin([latex]\frac{y}{x}[/latex]) = cxy.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 61.
Give the solution of x sin2 [latex]\frac{y}{x}[/latex] dx = y dx – x dy which passes through the point (1, [latex]\frac{\pi}{4}[/latex]). [Mar. 14]
Solution:
The given equation can be written as
Inter 2nd Year Maths 2B Differential Equations Important Questions 41
The given curve passes through (1, [latex]\frac{\pi}{4}[/latex])
cot [latex]\frac{\pi}{4}[/latex] = log 1 + c
1 = 0 + c ⇒ c = 1
Solution is cot [latex]\frac{y}{x}[/latex] = log x + 1

Question 62.
Solve (x3 – 3xy2) dx + (3x2y – y3) dy = 0
Solution:
(x3 – 3xy2) dx = -(3x2y – y3) dy
Inter 2nd Year Maths 2B Differential Equations Important Questions 42
Inter 2nd Year Maths 2B Differential Equations Important Questions 43

Question 63.
Transform the following two differential equations Into linear form.
x log x [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y = 2 log x
Solution:
Given equation can be written as
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + [latex]\frac{1}{x \log x}[/latex] . y = [latex]\frac{2}{x}[/latex]
This is of the form [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + Py = Q

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 64.
(x + 2y3) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = y
Solution:
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] = [latex]\frac{x+2 y^{3}}{y}[/latex] = [latex]\frac{x}{y}[/latex] + 2y2
[latex]\frac{\mathrm{dx}}{\mathrm{dy}}[/latex] – [latex]\frac{1}{y}[/latex] . x = 2y2
This is of the form [latex]\frac{\mathrm{dx}}{\mathrm{dy}}[/latex] + Px = Q.

Question 65.
(cos x) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y sin x = tan x
Solution:
Given equation can be written as
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y(tan x) = (tan x) (sec x)
P = tan x ⇒ [latex]\int[/latex] P dx = [latex]\int[/latex] tan x dx = log sec x
I.F. = e[latex]\int[/latex] log sec x = sec x

Question 66.
Solve (2x – 10y3) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y = o
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 44

Question 67.
Solve (1 + x2) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + 2xy – 4x2 = 0
Solution:
Given equation can be written as
Inter 2nd Year Maths 2B Differential Equations Important Questions 45

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 68.
Solve [latex]\frac{1}{x}[/latex] [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y . ex = e(1 – x)ex
Solution:
Given equation can be written as
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + (x.ex) . y = x . e(1 – x)ex
I.F. = e[latex]\int[/latex].ex dx = e(x – 1) ex
y . e(x – 1) ex = [latex]\int[/latex] x dx
= [latex]\frac{\mathrm{x}^{2}}{2}[/latex] + c
2y. e(x – 1) ex = x2 + 2c is the required solution.

Question 69.
Solve sin2 x. [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y = cot x
Solution:
Given equation can be written as
[latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] + y cosec2 x = cot x . cosec2 x
I.F. = e[latex]\int[/latex] cosec2 x dx = e-cot x
y . e-cot x = [latex]\int[/latex] e-cot x . cosec2 x. cot x dx ……………… (1)
Consider [latex]\int[/latex] e-cot x . cosec2 x . cot x dx
Put -cot x = t ⇒ cosec2 x dx = dt
(1) becomes y . et = [latex]\int[/latex] -t. et dt
= -(t – 1) et + c
y . e-cot x = -(-cot x – 1) e-cot x + 1
= (cot x + 1) e-cot x + c is the required solution.

Inter 2nd Year Maths 2B Differential Equations Important Questions

Question 70.
Find the solution of the equation
x(x – 2) [latex]\frac{\mathrm{dy}}{\mathrm{dx}}[/latex] – 2(x – 1)y = x3(x – 2)
which satisfies the condition that y = 9 when x = 3.
Solution:
The given equation can be written as
Inter 2nd Year Maths 2B Differential Equations Important Questions 46
Inter 2nd Year Maths 2B Differential Equations Important Questions 47

Question 71.
Solve (1 + y2)dx = (tan-1y – x)dy. [A.P. Mar. 15]
Solution:
Inter 2nd Year Maths 2B Differential Equations Important Questions 48
is the solution.

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Students get through Maths 2B Important Questions Inter 2nd Year Maths 2B Definite Integrals Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2B Definite Integrals Important Questions

Question 1.
[latex]\int_{2}^{3} \frac{2 x}{1+x^{2}} d x[/latex] [T.S. Mar. 16; May 06]
Solution:
I = [latex]\left[\ln \left|1+x^{2}\right|\right]_{2}^{3}[/latex]
= ln 10 – ln 5
= ln (10/5)
= ln 2

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 2.
[latex] \int_{0}^{\pi} \sqrt{2} \cdot \sqrt{2} \sqrt{\cos ^{2} \frac{\theta}{2} d \theta}[/latex] [A.P. Mar. 16; Mar. 05]
Solution:
I = [latex] \int_{0}^{\pi} \sqrt{2} \cdot \sqrt{2} \sqrt{\cos ^{2} \frac{\theta}{2} d \theta}[/latex]
= [latex]\int_{0}^{\pi} 2 \cdot \cos \theta / 2 d \theta[/latex]
= [latex][4 \sin \theta / 2]_{0}^{\pi}[/latex]
= 4 (sin [latex]\frac{\pi}{2}[/latex] – sin 0)
= 4

Question 3.
[latex]\int_{0}^{2}|1-x| d x[/latex] [A.P. Mar. 15; May 11]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 1

Question 4.
I = [latex]\int_{1}^{5} \frac{d x}{\sqrt{2 x-1}}[/latex] [T.S. Mar. 15]
Solution:
Let 2x – 1 = t2
2 dx = 2t dt
dx = t dt
UL : t = 3
LL : t = 1
I = [latex]\int_{1}^{3} \frac{t d t}{t}[/latex]
= [latex]\int_{1}^{3} d t[/latex]
= [latex][\mathrm{t}]_{1}^{3}[/latex] = 3 – 1
= 2

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 5.
I = [latex]\int_{0}^{1} \frac{x^{2}}{x^{2}+1} d x[/latex] [Mar. 11]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 2

Question 6.
[latex]\int_{0}^{2 \pi}[/latex] sin2x cos4; x dx [T.S. Mar. 15; Mar 14]
Solution:
sin2x cos4x is even function.
Inter 2nd Year Maths 2B Definite Integrals Important Questions 3

Question 7.
Evaluate [latex]\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x[/latex] [T.S. Mar. 16]
Solution:
Put x = a sin θ ⇒ dx = a cos θ . dθ
θ = 0 ⇒ x = 0, x = a ⇒ θ = [latex]\frac{\pi}{2}[/latex]
Inter 2nd Year Maths 2B Definite Integrals Important Questions 4

Question 8.
Find [latex]\int_{-\pi / 2}^{\pi / 2}[/latex] sin2 x cos4 x dx [A.P. Mar. 16]
Solution:
f(x) is even
∴ [latex]\int_{-\pi / 2}^{\pi / 2}[/latex] sin2 x cos4 x dx = 2 [latex]\int_{0}^{\pi / 2} \sin ^{2} x \cdot \cos ^{4} x d x[/latex]
= 2 . [latex]\frac{3}{6}[/latex] . [latex]\frac{1}{4}[/latex] . [latex]\frac{1}{4}[/latex] . [latex]\frac{\pi}{4}[/latex] = [latex]\frac{\pi}{16}[/latex]

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 9.
[latex]\int_{0}^{\pi / 2} \cdot \frac{\sin ^{5} x}{\sin ^{5} x+\cos ^{5} x} d x[/latex] [Mar. 14, 08]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 5

Question 10.
I = [latex]\int_{0}^{\pi / 4} \frac{\sin x+\cos x}{9+16 \sin 2 x} d x[/latex] [Mar. 08]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 6
= -[latex]\frac{1}{40} \ln \left[\frac{1 / 4}{9 / 4}\right][/latex] = [latex]\frac{1}{40}[/latex] . 2ln . 3 = [latex]\frac{1}{20}[/latex] ln 3

Question 11.
y = x3 + 3, y = 0, x = -1, x = 2 [Mar. 05]
Solution:
Required area PABQ
Inter 2nd Year Maths 2B Definite Integrals Important Questions 7

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 12.
x = 4 – y2, x = 0. [Mar. 11]
Solution:
The given parabola x = 4 – y2 meets, the x – axis at A (4, 0) and Y – axis at P(0, 2) and Q(6, -2).
The parabola is symmetrical about X – axis
Inter 2nd Year Maths 2B Definite Integrals Important Questions 8
Required area = 2 Area of OAP
Inter 2nd Year Maths 2B Definite Integrals Important Questions 9

Question 13.
Evaluate the following definite integrals.
(i) [latex]\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{5} x d x[/latex]
(ii) [latex]\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{4} x d x[/latex]
(iii) [latex]\int_{0}^{\pi / 2} \sin ^{6} x \cos ^{4} x d x[/latex]
Solution:
(i) [latex]\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{5} x d x[/latex]
= [latex]\frac{4}{9}[/latex] . [latex]\frac{2}{7}[/latex] . [latex]\frac{1}{5}[/latex] = [latex]\frac{8}{315}[/latex]

(ii) [latex]\int_{0}^{\pi / 2} \sin ^{5} x \cos ^{4} x d x[/latex]
= [latex]\frac{3}{9}[/latex] . [latex]\frac{1}{7}[/latex] . [latex]\frac{4}{5}[/latex] . [latex]\frac{2}{3}[/latex] = [latex]\frac{8}{315}[/latex]

(iii) [latex]\int_{0}^{\pi / 2} \sin ^{6} x \cos ^{4} x d x[/latex]
= [latex]\frac{3}{10}[/latex] . [latex]\frac{1}{8}[/latex] . [latex]\frac{5}{6}[/latex] . [latex]\frac{3}{4}[/latex] . [latex]\frac{1}{2}[/latex] . [latex]\frac{\pi}{2}[/latex]
= [latex]\frac{3}{512}[/latex] π

Question 14.
[latex]\int_{0}^{\pi / 2} \frac{d x}{4+5 \cos x}[/latex] [A.P. Mar. 16, 15]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 10
= [latex]\frac{1}{3}\left[\ln \frac{4}{2}\right]=\frac{1}{3} \ln 2[/latex]

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 15.
[latex]\int_{0}^{\pi} \frac{x}{1+\sin x} d x[/latex] [May 11]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 11
Inter 2nd Year Maths 2B Definite Integrals Important Questions 12

Question 16.
[latex]\int_{0}^{\pi} \frac{x \sin ^{3} x}{1+\cos ^{2} x} d x[/latex] [T.S. Mar. 15; Mar. 11]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 13
Inter 2nd Year Maths 2B Definite Integrals Important Questions 14

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 17.
[latex]\int_{0}^{1} \frac{\log (1+x)}{1+x^{2}} d x[/latex] [Mar. 07, 05]
Solution:
Put x = tan θ
dx = sec2 θ dθ
x = 0 ⇒ θ = 0
x = 1 ⇒ θ = [latex]\frac{\pi}{4}[/latex]
Inter 2nd Year Maths 2B Definite Integrals Important Questions 15
Inter 2nd Year Maths 2B Definite Integrals Important Questions 16

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 18.
[latex]\int_{0}^{\pi / 4} \log (1+\tan x) d x[/latex] [A.P. Mar. 16]
Solution:
I = [latex]\int_{0}^{\pi / 4} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x[/latex]
Inter 2nd Year Maths 2B Definite Integrals Important Questions 17

Question 19.
y = 4x – x2, y = 5 – 2x. [T.S. Mar. 16]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 18
y = 4x – x2 …………….. (i)
y = 5 – 2x ……………….. (ii)
y = -([x – 2]2) + 4
y – 4 = (x – 2)2
Solving equations (i) and (ii) we get
4x – x2 = 5 – 2x
x2 – 6x + 5 = 0
(x – 5) (x – 1) = 0
x = 1, 5
Required area = [latex]=\int_{1}^{5}\left(4 x-x^{2}-5+2 x\right) d x[/latex]
= [latex]\int_{-1}^{5}\left(6 x-x^{2}-5\right) d x[/latex]
= [latex]\left(3 x^{2}-\frac{x^{3}}{3}-5 x\right)_{1}^{5}[/latex]
= (75 – [latex]\frac{125}{3}[/latex] – 25) – (3 – [latex]\frac{1}{3}[/latex] – 5)
= 50 – [latex]\frac{125}{3}[/latex] + 2 + [latex]\frac{1}{3}[/latex]
= [latex]\frac{150-125+6+1}{3}[/latex] = [latex]\frac{32}{3}[/latex] sq. units.

Question 20.
y2 = 4x, y2 = 4(4 – x) [May 11]
Solution:
Equations of the curves are y2 = 4x ………………… (1)
y2 = 4(4 – x) …………………. (2)
Eliminating y, we get
4x = 4 (4 – x)
2x = 4 ⇒ x = 2
Substituting in equation (1), y2 = 8
Inter 2nd Year Maths 2B Definite Integrals Important Questions 19
= 2[[latex]\frac{4}{3}[/latex](2[latex]\sqrt{2}[/latex]) – [latex]\frac{4}{3}[/latex](-2[latex]\sqrt{2}[/latex])]
= 2([latex]\frac{8 \sqrt{2}}{3}[/latex] + [latex]\frac{8 \sqrt{2}}{3}[/latex])
= 2([latex]\frac{16 \sqrt{2}}{3}[/latex]) = [latex]\frac{32 \sqrt{2}}{3}[/latex] sq. units

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 21.
Show that the area of the region bounded by [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 (ellipse) is it ab. also deduce the area of the circle x2 + y2 = a2. [Mar. 14, May 05]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 20
The ellipse is symmetrical about X and Y axis
Area of the ellipse = 4 Area of CAB
= 4 . [latex]\frac{\pi}{4}[/latex] ab
Inter 2nd Year Maths 2B Definite Integrals Important Questions 21
(from Prob. 8 in ex 10(a))
= πab
Substituting b = a, we get the circle
x2 + y2 = a2
Area of the circle = πa(a) = πa2 sq. units.

Question 22.
Evaluate [latex]\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x[/latex] [Mar. 14]
Solution:
Let A = [latex]\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x[/latex]
Put x = [latex]\frac{\pi}{2}[/latex] – t, dx = – dt
Inter 2nd Year Maths 2B Definite Integrals Important Questions 22
= [latex]\int_{\pi / 6}^{\pi / 3} d x=(x)_{\pi / 6}^{\pi / 3}[/latex]
= [latex]\frac{\pi}{3}-\frac{\pi}{6}=\frac{\pi}{6}[/latex]
A = [latex]\frac{\pi}{12}[/latex]

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 23.
Find [latex]\int_{0}^{\pi} \frac{x \cdot \sin x}{1+\sin x} d x[/latex] [T.S. Mar. 16] [A.P. Mar. 15]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 23
Inter 2nd Year Maths 2B Definite Integrals Important Questions 24
= [latex]\left(2 \tan \frac{x}{2}\right)_{0}^{\pi / 2}[/latex]
= 2 . tan [latex]\frac{\pi}{2}[/latex] – 2 . 0
= 2 – 1 = 2
2A = [latex]\pi(x)_{0}^{\pi}[/latex] – 2π = π(π) – 2 = π2 – 2π
A = [latex]\frac{\pi^{2}}{2}[/latex] – π

Question 24.
Find [latex]\int^{\pi} x \sin ^{7} x \cos ^{6} x d x .[/latex] [May 05] [T.S. Mar. 19]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 25
A = [latex]\pi \int_{0}^{\pi / 2} \sin ^{7} x \cos ^{6} x d x[/latex]
= π . [latex]\frac{6}{17}[/latex] . [latex]\frac{3}{11}[/latex] . [latex]\frac{1}{9}[/latex] . [latex]\frac{6}{7}[/latex] . [latex]\frac{4}{5}[/latex] . [latex]\frac{2}{3}[/latex]
= π [latex]\frac{16}{3003}[/latex]

Question 25.
Evaluate [latex]\int_{1}^{2} x^{5} d x[/latex] dx
Solution:
[latex]\int_{1}^{2} x^{5} \cdot d x=\left[\frac{x^{6}}{6}\right]_{1}^{2}[/latex]
= [latex]\frac{2^{6}}{6}-\frac{1}{6}=\frac{63}{6}=\frac{21}{2}[/latex]

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 26.
Evaluate [latex]\int_{0}^{\pi} \sin x d x[/latex]
Solution:
[latex]\int_{0}^{\pi} \sin x d x=[-\cos x]_{0}^{\pi}[/latex]
= – cos π – (- cos 0)
= + 1 + 1= 2

Question 27.
Evaluate [latex]\int_{0}^{a} \frac{d x}{x^{2}+a^{2}}[/latex]
Solution:
[latex]\int_{0}^{a} \frac{d x}{x^{2}+a^{2}}=\left[\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)\right]_{0}^{a}[/latex]
= [latex]\frac{1}{a}[/latex] [tan-1 (1) – tan-1 (0)]
= [latex]\frac{1}{a}[/latex] ([latex]\frac{\pi}{4}[/latex] – 0) = [latex]\frac{\pi}{4 a}[/latex]

Question 28.
Evaluate [latex]\int_{1}^{4} x \sqrt{x^{2}-1} d x[/latex]
Solution:
g(x) = x2 – 1
f(t) = [latex]\sqrt{t}[/latex]
g'(x) = 2x
Inter 2nd Year Maths 2B Definite Integrals Important Questions 26

Question 29.
Evaluate [latex]\int_{0}^{2} \sqrt{4-x^{2}} d x[/latex]
Solution:
Let g(θ) = 2 sin θ ⇒ g'(θ) = 2 cos θ
f(x) = [latex]\sqrt{4-x^{2}}[/latex]
Inter 2nd Year Maths 2B Definite Integrals Important Questions 27

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 30.
Evaluate [latex]\int_{0}^{16} \frac{x^{1 / 4}}{1+x^{1 / 2}} d x[/latex]
Solution:
Put t4 = x ⇒ dx = 4t3 . dt
Inter 2nd Year Maths 2B Definite Integrals Important Questions 28

Question 31.
Evaluate [latex]\int_{-\pi / 2}^{\pi / 2} \sin |x| d x[/latex]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 29
Inter 2nd Year Maths 2B Definite Integrals Important Questions 30

Question 32.
Show that [latex]\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x[/latex]
Solution:
f(x) = sinnx.
Inter 2nd Year Maths 2B Definite Integrals Important Questions 31

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 33.
Evaluate [latex]\int_{0}^{\pi / 2} \frac{\cos ^{5 / 2} x}{\sin ^{5 / 2} x+\cos ^{5 / 2} x} d x[/latex]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 32
= [latex]\int_{0}^{\pi / 2} d x=(x)_{0}^{\pi / 2}=\frac{\pi}{2}[/latex]
A = [latex]\int_{0}^{\pi / 2} \frac{\cos ^{\frac{5}{2}} x}{\sin ^{\frac{5}{2}} x+\cos ^{\frac{5}{2}} x} d x=\frac{\pi}{4}[/latex]

Question 34.
Show that [latex]\int_{0}^{\pi / 2} \frac{x}{\sin x+\cos x} d x=\frac{\pi}{2 \sqrt{2}} \log (\sqrt{2}+1)[/latex]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 33
Inter 2nd Year Maths 2B Definite Integrals Important Questions 34
= [latex]\frac{\pi}{4 \sqrt{2}}[/latex] log ([latex]\sqrt{2}[/latex] + 1)2
= [latex]\frac{\pi}{4 \sqrt{2}}[/latex] 2 log ([latex]\sqrt{2}[/latex] + 1)
= [latex]\frac{\pi}{4 \sqrt{2}}[/latex] log ([latex]\sqrt{2}[/latex] + 1)

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 35.
Evaluate [latex]\int_{\pi / 6}^{\pi / 3} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x[/latex] [Mar 14]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 35
Inter 2nd Year Maths 2B Definite Integrals Important Questions 36

Question 36.
Find [latex]\int_{-a}^{a}\left(x^{2}+\sqrt{a^{2}-x^{2}}\right) d x[/latex]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 37
= 2([latex]\frac{a^{3}}{3}[/latex] – 0) + 2(0 + [latex]\frac{a^{2}}{3}[/latex] sin-1 (1) – 0 – 0)
= [latex]\frac{2a^{3}}{3}[/latex] + a2 . [latex]\frac{\pi}{2}[/latex]

Question 37.
Find [latex]\int_{0}^{\pi} \frac{x \cdot \sin x}{1+\sin x} d x[/latex] [T.S. Mar. 16] [A.P. Mar. 15]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 38
Inter 2nd Year Maths 2B Definite Integrals Important Questions 39
= [latex]\left(2 \tan \frac{x}{2}\right)_{0}^{\pi / 2}[/latex]
= 2 . tan [latex]\frac{\pi}{2}[/latex] – 2 . 0
= 2 – 1 = 2
2A = [latex]\pi(x)_{0}^{\pi}[/latex] – 2π = π(π) – 2 = π2 – 2π
A = [latex]\frac{\pi^{2}}{2}[/latex] – π

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 38.
Evaluate [latex]\int_{0}^{\pi / 2} x \sin x d x[/latex]
Solution:
[latex]\int_{0}^{\pi / 2} x \cdot \sin x d x=(-x \cdot \cos x)_{0}^{\pi / 2}+\int_{0}^{\pi / 2} \cos x d x[/latex]
= (0 – 0) + [latex](\sin x)_{0}^{\pi / 2}[/latex]
= sin [latex]\frac{\pi}{2}[/latex] – sin 0 = 1 – 0 = 1

Question 39.
Evaluate [latex]\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n}\left[\frac{n-i}{n+i}\right][/latex] by using the method of finding definite integral as the limit of a sum.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 40

Question 40.
Evaluate [latex]\lim _{n \rightarrow \infty} \frac{2^{k}+4^{k}+6^{k}+\ldots .+(2 n)^{k}}{n^{k+1}}[/latex] by using the method of finding definite integral as the limit of a sum.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 41

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 41.
Evaluate [latex]\lim _{n \rightarrow \infty}\left[\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots\left(1+\frac{n}{n}\right)\right]^{\frac{1}{n}}[/latex]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 42

Question 42.
Let f: R → R be a continuous periodic function and T be the period of it. Then prove that for any positive integer n,
[latex]\int_{0}^{n T} f(x) d x=n \int_{0}^{T} f(x) d x[/latex] ………………. (1)
Solution:
Let k be an integer arid define
g : [kT, (k + 1)T] → [0, T] as g(t) = t – kT.
Then g'(t) = 1 for all t ∈ [kT, (k + 1)T].
Hence by [latex]\int_{g(c)}^{g(d)} f(t) d t=\int_{c}^{d} f(g(x)) g^{\prime}(x) d x,(f \circ g)[/latex]
g’ is integrable on [kT, (k + 1 )T] and
[latex]\int_{k T}^{(k+1) T} f(g(t)) g^{\prime}(t) d t=\int_{0}^{T} f(x) d x[/latex] ………… (2)
We have f(g(t)) g'(t) = f(t – kT), 1 = f(t),
since f is periodic with T as the period.
Hence [latex]\int_{k T}^{(k+1) T} f(g(t)) g^{\prime}(t) d t=\int_{k T}^{(k+1) T} f(t) d t[/latex] ………….. (3)
Thus from (2) and (3),
[latex]\int_{k T}^{(k+1) T} f(t) d t=\int_{0}^{T} f(t) d t[/latex] ………………. (4)
Let us now prove eq. (1) by using the principle of mathematical induction.
For n = 1, clearly (1) is true.
Assume (1) is true for a positive integer m.
Inter 2nd Year Maths 2B Definite Integrals Important Questions 43
Hence eq. (1) is true for n = m + 1
Thus, eq. (1) ¡s true for any positive integer n, by the principle of mathematical induction.

Question 43.
Find
(i) [latex]\int_{0}^{\pi / 2} \sin ^{4} x d x[/latex]
(ii) [latex]\int_{0}^{\pi / 2} \sin ^{7} x d x[/latex]
(iii) [latex]\int_{0}^{\pi / 2} \cos ^{8} x d x[/latex]
Solution:
(i) [latex]\int_{0}^{\pi / 2} \sin ^{4} x d x[/latex]
= [latex]\frac{3}{4}[/latex] . [latex]\frac{1}{2}[/latex] . [latex]\frac{\pi}{2}[/latex] = [latex]\frac{3\pi}{16}[/latex]

(ii) [latex]\int_{0}^{\pi / 2} \sin ^{7} x d x[/latex]
= [latex]\frac{6}{7}[/latex] . [latex]\frac{4}{5}[/latex] . [latex]\frac{2}{3}[/latex] = [latex]\frac{16}{35}[/latex]

(iii) [latex]\int_{0}^{\pi / 2} \cos ^{8} x d x[/latex]
= [latex]\frac{7}{8}[/latex] . [latex]\frac{5}{6}[/latex] . [latex]\frac{3}{4}[/latex] . [latex]\frac{1}{2}[/latex] . [latex]\frac{\pi}{2}[/latex] = [latex]\frac{35\pi}{256}[/latex]

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 44.
Evaluate [latex]\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x[/latex] [T.S. Mar. 16]
Solution:
Put x = a sin θ ⇒ dx = a cos θ . dθ
θ = 0 ⇒ x = 0, x = a ⇒ θ = [latex]\frac{\pi}{2}[/latex]
[latex]\int_{0}^{a} \sqrt{a^{2}-x^{2}} d x=\int_{0}^{\pi / 2}(a \cos \theta)(a \cos \theta) d \theta[/latex]
= a2 [latex]\int_{0}^{\pi / 2}[/latex] cos2 θ dθ
= a2 . [latex]\frac{1}{2}[/latex] . [latex]\frac{\pi}{2}[/latex] = [latex]\frac{\pi a^{2}}{4}[/latex]

Question 45.
Evaluate the following definite integrals.
(i) [latex]\int_{0}^{\pi / 2}[/latex] sin4 x . cos5 x dx
(ii) [latex]\int_{0}^{\pi / 2}[/latex] sin5 x . cos4 x dx
(iii) [latex]\int_{0}^{\pi / 2}[/latex] sin6 x . cos4 x dx
Solution:
(i) [latex]\int_{0}^{\pi / 2}[/latex] sin4 x . cos5 x dx
= [latex]\frac{4}{9}[/latex] . [latex]\frac{2}{7}[/latex] . [latex]\frac{1}{5}[/latex] = [latex]\frac{8}{315}[/latex]

(ii) [latex]\int_{0}^{\pi / 2}[/latex] sin5 x . cos4 x dx
= [latex]\frac{3}{9}[/latex] . [latex]\frac{1}{7}[/latex] . [latex]\frac{4}{5}[/latex] . [latex]\frac{2}{3}[/latex] = [latex]\frac{8}{315}[/latex]

(iii) [latex]\int_{0}^{\pi / 2}[/latex] sin6 x . cos4 x dx
= [latex]\frac{3}{10}[/latex] . [latex]\frac{1}{8}[/latex] . [latex]\frac{5}{6}[/latex] . [latex]\frac{3}{4}[/latex] . [latex]\frac{1}{2}[/latex] . [latex]\frac{\pi}{2}[/latex]
= [latex]\frac{3}{512}[/latex] π

Question 46.
Find [latex]\int_{0}^{2 \pi}[/latex] sin4 x . cos6 x dx [T.S. Mar. 19]
Solution:
f(x) = sin4 x . cos6 x dx
f(2π – x) = f(π – x) = f(x)
[latex]\int_{0}^{2 \pi}[/latex] sin4 x . cos6 x dx = 2 [latex]\int_{0}^{2 \pi}[/latex] sin4 x . cos6 x dx
= 4 [latex]\int_{0}^{2 \pi}[/latex] sin4 x . cos6 x dx
= 4 . [latex]\frac{5}{10}[/latex] . [latex]\frac{3}{8}[/latex] . [latex]\frac{1}{6}[/latex] . [latex]\frac{3}{4}[/latex] . [latex]\frac{1}{2}[/latex] . [latex]\frac{\pi}{2}[/latex]
= [latex]\frac{3}{128}[/latex] π

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 47.
Find [latex]\int_{-\pi / 2}^{\pi / 2}[/latex] sin2 x . cos4 x dx [A.P. Mar. 16, 19]
Solution:
f(x) is even
∴ [latex]\int_{-\pi / 2}^{\pi / 2}[/latex] sin2 x . cos4 x dx = 2 [latex]\int_{-\pi / 2}^{\pi / 2}[/latex] sin2 x . cos4 x dx
= 2 . [latex]\frac{3}{6}[/latex] . [latex]\frac{1}{4}[/latex] . [latex]\frac{1}{4}[/latex] . [latex]\frac{\pi}{4}[/latex]
= [latex]\frac{\pi}{16}[/latex]

Question 48.
Find [latex]\int_{0}^{\pi}[/latex] x sin7 x . cos6 x dx [May 05]
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 44
[latex]\int_{0}^{\pi}[/latex] x sin7 x . cos6 x dx = 2 [latex]\int_{0}^{\pi}[/latex] sin7 x . cos6 x dx
A = π [latex]\int_{0}^{\pi}[/latex] x sin7 x . cos6 x dx
= π . [latex]\frac{6}{17}[/latex] . [latex]\frac{3}{11}[/latex] . [latex]\frac{1}{9}[/latex] . [latex]\frac{6}{7}[/latex] . [latex]\frac{4}{5}[/latex] . [latex]\frac{2}{3}[/latex]
= π . [latex]\frac{16}{3003}[/latex]

Question 49.
Find [latex]\int_{-a}^{a}[/latex] a2 (a2 – x2)3/2 dx
Solution:
f(x) = x2 (a2 – x2)
f(x) is even
Inter 2nd Year Maths 2B Definite Integrals Important Questions 45

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 50.
Find [latex]\int_{0}^{1} x^{3 / 2} \sqrt{1-x} d x[/latex]
Solution:
Put x = sin2 θ
dx = 2 sin θ . cos θ . dθ
x = 0 ⇒ θ = 0, x = 1 ⇒ θ = [latex]\frac{\pi}{2}[/latex]
[latex]\int_{0}^{1} x^{3 / 2} \sqrt{1-x} d x[/latex]
= [latex]\int_{0}^{\pi / 2} \sin ^{3} \theta \cdot \cos \theta .2 \sin \theta \cos \theta d \theta[/latex]
= [latex]2 \int_{0}^{\pi / 2} \sin ^{4} \theta \cdot \cos ^{2} \theta d \theta[/latex]
= 2 . [latex]\frac{3}{6}[/latex] . [latex]\frac{1}{4}[/latex] . [latex]\frac{1}{2}[/latex] . [latex]\frac{\pi}{2}[/latex] = [latex]\frac{\pi}{16}[/latex]

Question 51.
Find the area under the curve f(x) = sin x in [0, 2π].
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 46
f(x) = sin x,
We know that in [0, π], sin x ≥ 0 and [π, 2π], sin x ≤ 0
Required area = [latex]\int_{1}^{\pi}[/latex] sinx dx + [latex]\int_{\pi}^{2 \pi}[/latex] (-sinx) dx
= [latex](-\cos x)_{0}^{\pi}[\cos x]_{\pi}^{2 \pi}[/latex]
= – cos π + cos 0 + cos 2π – cos π
= -(-1) + 1 + 1-(-1) = 1 + 1 + 1 + 1
= 4.

Question 52.
Find the area under the curve f(x) = cos x in [0, 2π].
Solution:
We know that cos x ≥ 0 in (0, [latex]\frac{\pi}{2}[/latex]) ∪ ([latex]\frac{3\pi}{2}[/latex], π) and ≤ 0 in [latex]\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)[/latex]
Inter 2nd Year Maths 2B Definite Integrals Important Questions 47
= sin [latex]\frac{\pi}{2}[/latex] – sin 0 – sin [latex]\frac{3\pi}{2}[/latex] + sin [latex]\frac{\pi}{2}[/latex] + sin 2π – sin [latex]\frac{3\pi}{2}[/latex]
= 1 – 0 – (-1) + 1 + 0 – (-1)
= 1 + 1 + 1 + 1 = 4.

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 53.
Find the area bounded by the parabola y = x2, the X-axis and the lines x = -1, x = 2.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 48

Question 54.
Find the area cut off between the line y = 0 and the parabola y = x2 – 4x + 3.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 49
Equation of the parabola is
y = x2 – 4x + 3
Equation of the line is y = 0
x2 – 4x + 3 = 0
(x – 1) (x – 3) = 0
x = 1, 3
The curve takes negative values for the values of x between 1 and 3.
Required area = [latex]\int_{1}^{3}[/latex] -(x2 – 4x + 3)dx
= [latex]\int_{1}^{3}[/latex] (-x2 + 4x – 3) dx
= [latex]\left(-\frac{x^{3}}{3}+2 x^{2}-3 x\right)_{1}^{3}[/latex]
= (-9 + 18 – 9) – (-[latex]\frac{1}{3}[/latex] + 2 – 3)
= [latex]\frac{1}{3}[/latex] – 2 + 3 = [latex]\frac{4}{3}[/latex]

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 55.
Find the area bounded by y = sin x and y = cos x between any two consecutive points of intersection.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 50
= [latex]\frac{1}{\sqrt{2}}[/latex] + [latex]\frac{1}{\sqrt{2}}[/latex] + [latex]\frac{1}{\sqrt{2}}[/latex] + [latex]\frac{1}{\sqrt{2}}[/latex] = 4[latex]\frac{1}{\sqrt{2}}[/latex] = 2[latex]\sqrt{2}[/latex]

Question 56.
Find the area of one of the curvilinear triangles bounded by y = sin x, y = cos x and X – axis.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 51
ln (0, [latex]\frac{\pi}{4}[/latex]) cos x ≥ sin x and ([latex]\frac{\pi}{4}[/latex], [latex]\frac{\pi}{2}[/latex]), cos x ≤ sin x.
Required area = [latex]\int_{0}^{\pi / 4}[/latex] sin x dx + [latex]\int_{\pi / 4}^{\pi / 2}[/latex] cos x dx
= [latex](-\cos x)_{0}^{\pi / 4}+(\sin x)_{\pi / 4}^{\pi / 2}[/latex]
= – cos [latex]\frac{\pi}{4}[/latex] + cos 0 + sin [latex]\frac{\pi}{2}[/latex] – sin [latex]\frac{\pi}{4}[/latex]
= – [latex]\frac{1}{\sqrt{2}}[/latex] + 1 + 1 – [latex]\frac{1}{\sqrt{2}}[/latex]
= 2(1 – [latex]\frac{1}{\sqrt{2}}[/latex]) = 2 – [latex]\sqrt{2}[/latex]

Question 57.
Find the area of the right angled triangle with base b and altitude h, using the fundamental theorem of integral calculus.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 52
OAB is a right angled triangle and ∠B = 90° take ‘O’ as the origin and OB as positive X-axis
If OB = band AB = h, then Co-ordinates of A are (b, h)
Equation of OA is y = [latex]\frac{h}{b}[/latex] x
Area of the triangle OAB = [latex]\int_{0}^{b} \frac{h}{b} x d x[/latex]
= [latex]\frac{h}{b}\left(\frac{x^{2}}{2}\right)_{0}^{b}=\frac{h}{b} \cdot \frac{b^{2}}{2}=\frac{1}{2} b h .[/latex]

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 58.
Find the area bounded between the curves y2 – 1 = 2x and x = 0.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 53
= [latex]\left(-\frac{y^{3}}{3}+y\right)_{0}^{1}[/latex] = 1 – [latex]\frac{1}{3}[/latex] = [latex]\frac{2}{3}[/latex]

Question 59.
Find the area enclosed by the curves y = 3x and y = 6x – x2.
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 54
y = 6x – x2
The straight line y = 3x meets the parabola
y = 6x – x2
3x = 6x = x2
x2 – 3x = 0
x(x – 3) = 0
x = 0 or 3
Required area = [latex]\int_{0}^{3}\left(6 x-x^{2}-3 x\right) d x[/latex]
= [latex]\int_{0}^{3}\left(3 x-x^{2}\right) d x=\left(\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right)_{0}^{3}[/latex]
= [latex]\frac{27}{2}[/latex] – [latex]\frac{27}{3}[/latex] = [latex]\frac{27}{6}[/latex] = [latex]\frac{9}{2}[/latex]

Question 60.
Find the area enclosed between y = x2 – 5x and y = 4 – 2x.
Solution:
Equations of the curves are
y = x2 – 5x ………. (1)
y = 4 – 2x …………….. (2)
x2 – 5x = 4 – 2x
x2 – 3x – 4 = 0
(x + 1)(x – 4) = 0
x = -1, 4
Inter 2nd Year Maths 2B Definite Integrals Important Questions 55
= 44 – [latex]\frac{64}{3}[/latex] – [latex]\frac{3}{2}[/latex] – [latex]\frac{1}{3}[/latex]
= [latex]\frac{264-128-9-2}{6}[/latex] = [latex]\frac{125}{6}[/latex]

Inter 2nd Year Maths 2B Definite Integrals Important Questions

Question 61.
Find the area bounded between the curves y = x2, y = [latex]\sqrt{x}[/latex].
Solution:
Inter 2nd Year Maths 2B Definite Integrals Important Questions 56
= [latex]\left(\frac{2}{3} x \sqrt{x}-\frac{x^{3}}{3}\right)_{0}^{1}[/latex]
= [latex]\frac{2}{3}[/latex] – [latex]\frac{1}{3}[/latex] = [latex]\frac{1}{3}[/latex]

Question 62.
Find the area bounded between the curves y2 = 4ax, x2 = 4by (a > 0, b > 0).
Solution:
Equations of the given curves are
y2 = 4ax …………………… (1)
x2 = 4by ……………………. (2)
From equation (2), y = [latex]\frac{x^{2}}{4 b}[/latex]
Substituting in (1) [latex]\left(\frac{x^{2}}{4 b}\right)^{2}[/latex] = 4ax
x4 = (16 b2) |4ax|
Inter 2nd Year Maths 2B Definite Integrals Important Questions 57
Inter 2nd Year Maths 2B Definite Integrals Important Questions 58

Inter 2nd Year Maths 2B Integration Important Questions

Students get through Maths 2B Important Questions Inter 2nd Year Maths 2B Integration Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2B Integration Important Questions

Question 1.
[latex]\int\left(\frac{1}{1-x^{2}}+\frac{2}{1+x^{2}}\right)[/latex] [May 11]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 1

Question 2.
[latex]\int[/latex] sec2x cosec2x dx on I ⊂ R \ ({nπ : n ∈ Z} ∪ {(2n + 1) [latex]\frac{\pi}{2}[/latex] : n ∈ Z}) [T.S. Mar. 16; Mar, May 07]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 2

Inter 2nd Year Maths 2B Integration Important Questions

Question 3.
[latex]\int \frac{1+\cos ^{2} x}{1-\cos 2 x}[/latex] dx on I ⊂ R \ {nπ : n ∈ Z} [Mar. 13]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 3

Question 4.
[latex]\int \sqrt{1-\cos 2 x}[/latex] dx on I ⊂ [2nπ, (n + 1) π], n ∈ Z [May 06]
Solution:
[latex]\int \sqrt{1-\cos 2 x}[/latex] dx = [latex]\int \sqrt{2}[/latex] sin x dx
= -[latex]\sqrt{2}[/latex] cos x + C

Question 5.
[latex]\int \frac{1}{\cosh x+\sinh x}[/latex] dx on R. [A.P. Mar. 16]
Solution:
[latex]\int \frac{1}{\cosh x+\sinh x}[/latex] dx
= [latex]\int \frac{\cosh x-\sinh x}{\cosh ^{2} x-\sinh ^{2} x}[/latex] dx
= [latex]\int[/latex] (cosh x – sinh x) dx
= sinh x – cosh x + C

Inter 2nd Year Maths 2B Integration Important Questions

Question 6.
[latex]\int \frac{1}{1+\cos x}[/latex] dx on I ⊂ R \ {(2n + 1)π : n ∈ Z} [T.S. Mar. 15]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 4

Question 7.
[latex]\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}}[/latex]dx, x ∈ R. [A.P. Mar. 15]
Solution:
[latex]\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}}[/latex]dx
t = tan-1 x ⇒ dt = [latex]\frac{d x}{1+x^{2}}[/latex]
[latex]\int \frac{\sin \left(\tan ^{-1} x\right)}{1+x^{2}}[/latex]dx = [latex]\int[/latex] sin t dt
= – cos t + t
= -cos (tan-1 x) + C

Question 8.
[latex]\int \frac{\log (1+x)}{1+x}[/latex]dx on (-1, ∞) [T.S. Mar. 15]
Solution:
[latex]\int \frac{\log (1+x)}{1+x}[/latex]dx
t = 1 + x ⇒ dt = dx
Inter 2nd Year Maths 2B Integration Important Questions 5

Question 9.
[latex]\int \frac{x^{2}}{\sqrt{1-x^{6}}}[/latex] dx on I = (-1, 1). [May 05]
Solution:
[latex]\int \frac{x^{2}}{\sqrt{1-x^{6}}}[/latex]
t = x3 ⇒ dt = mx2 dx
[latex]\int \frac{x^{2}}{\sqrt{1-x^{6}}}[/latex] = [latex]\frac{1}{3} \int \frac{d \mathrm{t}}{\sqrt{1-\mathrm{t}^{2}}}[/latex]
= [latex]\frac{1}{3}[/latex] sin-1 t + C
= [latex]\frac{1}{3}[/latex] sin-1 (x3) + C

Inter 2nd Year Maths 2B Integration Important Questions

Question 10.
[latex]\int \frac{x^{8}}{1+x^{18}}[/latex] dx on R. [A.P. Mar. 16]
Solution:
t = x9 ⇒ dt = 9x8 dx
[latex]\int \frac{x^{8} d x}{1+x^{18}}=\int \frac{x^{8}}{1+\left(x^{9}\right)^{2}} d x[/latex]
= [latex]\frac{1}{9} \int \frac{d t}{1+t^{2}}[/latex] = = [latex]\frac{1}{9}[/latex] tan-1 t + C
= [latex]\frac{1}{9}[/latex] tan-1 (x9) + C

Question 11.
[latex]\int \frac{1}{x \log x[\log (\log x)]}[/latex] dx on (1, ∞) [Mar. 11]
Solution:
t = log (log x)
dt = [latex]\frac{1}{\log x} \cdot \frac{1}{x}[/latex] dx
[latex]\int \frac{1}{x \log x[\log (\log x)]}[/latex] dx = [latex]\int \frac{d t}{t}[/latex]
= log |t| + C
= log |log(log x)| + C

Question 12.
[latex]\int \frac{1}{(x+3) \sqrt{x+2}}[/latex]dx on I ⊂ (-2, ∞) [Mar. 14]
Solution:
x + 2 = t2
dx = 2t dt
[latex]\int \frac{d x}{(x+3) \sqrt{x+2}}=\int \frac{2 t d t}{t\left(t^{2}+1\right)}[/latex]
= [latex]2 \int \frac{d t}{t^{2}+1}[/latex]
= 2 tan-1 (t) + C
= 2 tan-1 ([latex]\sqrt{x+2}[/latex]) + C

Inter 2nd Year Maths 2B Integration Important Questions

Question 13.
[latex]\int \frac{\cot (\log x)}{x}[/latex] dx, x ∈ I ⊂ (0, ∞) \ {e : n ∈ Z). [Mar. 05]
Solution:
t = log x ⇒ dt = [latex]\frac{\mathrm{dx}}{\mathrm{x}}[/latex] [latex]\int[/latex]
[latex]\int \frac{\cot (\log x)}{x}[/latex] dx = [latex]\int[/latex] cot t dt = log (sin t) + C
= log |sin (log x)| + C

Question 14.
[latex]\int[/latex] (tan x + log sec x)ex dx on ((2n – [latex]\frac{1}{2}[/latex])π, (2n + [latex]\frac{1}{2}[/latex])π) n ∈ Z. [May 07, Mar. 08]
Solution:
t = log |sec x| ⇒ dt = [latex]\frac{1}{\sec x}[/latex] . sec x . tan x dx
= tan x dx
[latex]\int[/latex] (tan x + log sec x)ex dx = ex . log|sec x| + C

Question 15.
[latex]\int \sqrt{x}[/latex] log x dx on (0, ∞) [T.S. Mar. 16]
Solution:
[latex]\int \sqrt{x}[/latex] log x dx
= (log x) [latex]\frac{2}{3}[/latex] x3/2 – [latex]\frac{2}{3}[/latex] [latex]\int[/latex] x3/2 [latex]\frac{1}{x}[/latex] dx
= [latex]\frac{2}{3}[/latex] x3/2 (log x) – [latex]\frac{2}{3}[/latex] [latex]\int[/latex] x1/2 dx
= [latex]\frac{2}{3}[/latex] x3/2 (log x) – [latex]\frac{2}{3}[/latex] [latex]\frac{x^{3 / 2}}{3 / 2}[/latex] + C
= [latex]\frac{2}{3}[/latex] x3/2 (log x) – [latex]\frac{4}{9}[/latex] x3/2 + C

Question 16.
[latex]\int[/latex] ex (tan x + sec2 x)dx on I ⊂ R \ {(2n + 1)[latex]\frac{\pi}{2}[/latex] : n ∈ Z} [Mar 06]
Solution:
f(x) = tanx = f'(x) ⇒ sec2 x dx
I = [latex]\int[/latex] ex [f(x) + f'(x)] dx = ex. f(x) + C
= ex . tan x + C

Inter 2nd Year Maths 2B Integration Important Questions

Question 17.
[latex]\int e^{x}\left(\frac{1+x \log x}{x}\right)[/latex] dx on (0, ∞) [A.P. Mar. 15, Mar. 13]
Solution:
[latex]\int e^{x}\left(\frac{1+x \log x}{x}\right)[/latex] dx = [latex]\int[/latex] ex (log x + [latex]\frac{1}{x}[/latex])dx
= ex . log x + C

Question 18.
[latex]\int \frac{\cos x}{\sin ^{2} x+4 \sin x+5}[/latex]dx [Mar. 07]
Solution:
t = sin x ⇒ dt = cos x dx
I = [latex]\int \frac{d t}{t^{2}+4 t+5}=\int \frac{d t}{(t+2)^{2}+1}[/latex]
= tan-1(t + 2) + C
= tan-1(sin x + 2) + C

Question 19.
[latex]\int \frac{d x}{(x+1)(x+2)}[/latex] [Mar. 14, May 11]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 6

Question 20.
[latex]\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)}[/latex] dx on I ⊂ R \ {x ∈ R : cos (xex) = 0} [T.S. Mar. 17]
Solution:
t = x . ex
dt = (x . ex + ex) dx = ex (1 + x) dx
[latex]\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)}[/latex] dx = [latex]\int \frac{d t}{\cos ^{2} t}=\int \sec ^{2} t d t[/latex]
= tan t + C
= tan (x . ex) + C

Question 21.
[latex]\int[/latex] x tan-1 x dx, x∈ R [Mar. 05]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 7

Inter 2nd Year Maths 2B Integration Important Questions

Question 22.
[latex]\int \sqrt{1+3 x-x^{2}} d x[/latex] [May 11]
Solution:
[latex]\int \sqrt{1+3 x-x^{2}} d x=\int \sqrt{1-\left(x^{2}-3 x\right)} d x[/latex]
= [latex]\int \sqrt{1-\left(x^{2}-3 x+\frac{9}{4}-\frac{9}{4}\right)} d x[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 8

Question 23.
[latex]\int \frac{9 \cos x-\sin x}{4 \sin x+5 \cos x} d x[/latex] [T.S. Mar. 17; Mar. 08]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 9

Question 24.
[latex]\int \frac{d x}{5+4 \cos 2 x}[/latex] [Mar. 11]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 10

Question 25.
Obtain reduction formula for In = [latex]\int[/latex] cotn x dx, n being a positive integer. n ≥ 2 and deduce the value of [latex]\int[/latex] cot4 x dx. [T.S. Mar. 19] [A.P. Mar. 16; May 11]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 11

Inter 2nd Year Maths 2B Integration Important Questions

Question 26.
Obtain reduction formula for In = [latex]\int[/latex] cosecn x dx, n being a positive integer. n ≥ 2 and deduce the value of [latex]\int[/latex] cosec5 x dx. [T.S. Mar. 16]
Solution:
In = [latex]\int[/latex] cosecn x dx = [latex]\int[/latex] cosecn – 2x . cosec2 x dx
= cosecn – 2x (-cot x) + [latex]\int[/latex] cot x . (n – 2) cosecn – 3 . (cot x) dx
= – cosecn – 2x . cot x + (n – 2) [latex]\int[/latex] cosecn – 2 x . (cosec2 x -1) dx
= – cosecn – 2x . cot x + (n – 2) In – 2 – (n – 2)In
In (1 + n – 2) = – cosecn – 2 x . cot x + (n – 2) In – 2
Inter 2nd Year Maths 2B Integration Important Questions 12

Question 27.
Evaluate [latex]\int \frac{2 x+5}{\sqrt{x^{2}-2 x+10}}[/latex] dx. [T.S. Mar. 15]
Solution:
We write
2x + 5 = A [latex]\frac{\mathrm{d}}{\mathrm{dx}}[/latex] (x2 – 2x + 10) + B
= A(2x – 2) + B
On comparing the coefficients of the like powers of x on both sides of the above equation, we get A = 1 and B = 7.
Thus 2x + 5 = (2x – 2) + 7
Hence [latex]\int \frac{2 x+5}{\sqrt{x^{2}-2 x+10}}[/latex] dx
= [latex]\int \frac{2 x-2}{\sqrt{x^{2}-2 x+10}} d x+7 \int \frac{d x}{\sqrt{x^{2}-2 x+10}}+C[/latex]
= [latex]2 \sqrt{x^{2}-2 x+10}+7 \int \frac{d x}{\sqrt{(x-1)^{2}+3^{2}}}[/latex] + C
= [latex]2 \sqrt{x^{2}-2 x+10}+7 \sinh ^{-1}\left(\frac{x-1}{3}\right)[/latex] + C

Question 28.
Evaluate [latex]\int[/latex] sin4 x dx. [Mar. 14]
Solution:
In = sinn x dx = [latex]-\frac{\sin ^{n-1} x \cdot \cos x}{n}+\frac{n-1}{n} \cdot I_{n-2}[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 13

Inter 2nd Year Maths 2B Integration Important Questions

Question 29.
[latex]\int \frac{2 \cos x+3 \sin x}{4 \cos x+5 \sin x} d x[/latex] [A.P. Mar. 15]
Solution:
Let 2 cos x + 3 sin x = A(4 cos x + 5 sin x) + B(-4 sin x + 5 cos x)
Equating the coefficient of sin x and cos x we get
4A + 5B = 2
5A – 4B = 3
Inter 2nd Year Maths 2B Integration Important Questions 14

Question 30
[latex]\int \frac{1}{1+\sin x+\cos x}[/latex] dx [T.S. Mar. 15]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 15

Question 31.
[latex]\int[/latex] (6x + 5) [latex]\sqrt{6-2 x^{2}+x}[/latex] dx [May 06]
Solution:
Let 6x + 5 = A(1 – 4x) + B
Equating the co-efficients of x
6 = -4 A ⇒ A = [latex]\frac{-3}{2}[/latex]
Equating the constants
A + B = 5
B = 5 – A = 5 + [latex]\frac{3}{2}[/latex] = [latex]\frac{13}{2}[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 16
Inter 2nd Year Maths 2B Integration Important Questions 17

Inter 2nd Year Maths 2B Integration Important Questions

Question 32.
[latex]\int \frac{d x}{4+5 \sin x}[/latex] [Mar. 05]
Solution:
t = tan [latex]\frac{x}{2}[/latex] ⇒ dt = sec2 [latex]\frac{x}{2}[/latex] . [latex]\frac{1}{2}[/latex] dx
Inter 2nd Year Maths 2B Integration Important Questions 18
Inter 2nd Year Maths 2B Integration Important Questions 19

Question 33.
[latex]\int \frac{d x}{(1+x) \sqrt{3+2 x-x^{2}}}[/latex] [May 05]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 20
Inter 2nd Year Maths 2B Integration Important Questions 21

Question 34.
[latex]\int \frac{d x}{4 \cos x+3 \sin x}[/latex] [Mar. 06]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 22
Inter 2nd Year Maths 2B Integration Important Questions 23

Inter 2nd Year Maths 2B Integration Important Questions

Question 35.
[latex]\int \frac{2 \sin x+3 \cos x+4}{3 \sin x+4 \cos x+5} d x[/latex] [Mar. 14, 11] [A.P. & T.S. Mar. 16]
Solution:
Let 2 sin x + 3 cos x + 4
= A(3 sin x+4 cos x + 5) + 3(3 cos x – 4sin x) + C
Equating the co-efficients of
sin x. we get 3A – 4B = 2
cos x, we get 4A + 3B = 3
Inter 2nd Year Maths 2B Integration Important Questions 24
Inter 2nd Year Maths 2B Integration Important Questions 25
Substituting in (1)
I = [latex]\frac{18}{25}[/latex] . x + [latex]\frac{1}{25}[/latex] log |3 sin x + 4 cos x + 5| – [latex]\frac{4}{5\left(3+\tan \frac{x}{2}\right)}[/latex] + C

Question 36.
[latex]\int \frac{x+3}{(x-1)\left(x^{2}+1\right)} d x[/latex] dx [May 07]
Solution:
Let [latex]\frac{x+3}{(x-1)\left(x^{2}+1\right)}[/latex] = [latex]\frac{A}{x-1}[/latex] + [latex]\frac{B x+C}{x^{2}+1}[/latex]
⇒ (x + 3) = A(x2 + 1) + (Bx + C)(x – 1) ………………… (1)
Put x = 1 in (1)
Then 4 = A(1 + 1) + 0 ⇒ A = 2
Put x = 0 in (1)
3 = A(1) + C(-1)
⇒ A – C = 3 ⇒ C = A – 3 = 2 – 3 = -1
Equating coefficient of x2 in (1)
0 = A + B
⇒ B = -A = -2
Inter 2nd Year Maths 2B Integration Important Questions 26

Inter 2nd Year Maths 2B Integration Important Questions

Question 37.
Find [latex]\int \frac{d x}{3 \cos x+4 \sin x+6}[/latex] [Mar. 13]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 27
Inter 2nd Year Maths 2B Integration Important Questions 28

Question 38.
Find [latex]\int[/latex] 2x7 dx on R.
Solution:
[latex]\int[/latex] 2x7 dx = 2 [latex]\int[/latex] x7 dx
= 2 . [latex]\frac{x^{8}}{8}[/latex] + C
= [latex]\frac{x^{8}}{4}[/latex] + C

Question 39.
Evaluate [latex]\int[/latex] cot2x dx on I ⊂ R \ {nπ : n ∈ Z}.
Solution:
[latex]\int[/latex] cot2x dx = [latex]\int[/latex] (cosec2x – 1) dx
= [latex]\int[/latex] cosec2 x dx – [latex]\int[/latex] dx
= -cot x – x + C

Question 40.
Evaluate [latex]\int\left(\frac{x^{6}-1}{1+x^{2}}\right)[/latex] dx for x ∈ R.
Solution:
[latex]\int\left(\frac{x^{6}-1}{1+x^{2}}\right)[/latex] dx = [latex]\int[/latex][(x4 – x2 + 1) – [latex]\frac{2}{1+x^{2}}[/latex]] dx
= [latex]\int[/latex] x4 dx – [latex]\int[/latex] x2 dx + [latex]\int[/latex] dx – 2 [latex]\int \frac{d x}{1+x^{2}}[/latex]
= [latex]\frac{x^{5}}{5}[/latex] – [latex]\frac{x^{3}}{3}[/latex] + x – 2 tan-1 x + C.

Inter 2nd Year Maths 2B Integration Important Questions

Question 41.
Find [latex]\int[/latex] (1 – x) (4 – 3x) (3 + 2x) dx, x ∈ R.
Solution:
(1 – x) (4 – 3x) (3 + 2x) = 6x3 – 5x2 – 13x + 12
[latex]\int[/latex](1 – x) (4 – 3x) (3 + 2x) dx
= [latex]\int[/latex] (6x3 – 5x2 – 13x + 12) dx
= 6[latex]\int[/latex] x3dx – 5 [latex]\int[/latex] x2 dx – 13 [latex]\int[/latex] x dx + 12 [latex]\int[/latex] dx
= [latex]\frac{6 x^{4}}{4}[/latex] – 5 [latex]\frac{x^{3}}{3}[/latex] – [latex]\frac{13 x^{2}}{2}[/latex] + 12x + C
= [latex]\frac{3}{2}[/latex]x4 – [latex]\frac{5}{3}[/latex]x3 – [latex]\frac{13}{2}[/latex]x2 + 12x + C.

Question 42.
Evaluate [latex]\int\left(x+\frac{1}{x}\right)^{3}[/latex] dx, x > 0.
Solution:
(x + [latex]\frac{1}{x}[/latex])3 = x3 + 3x + [latex]\frac{3}{x}[/latex] + [latex]\frac{1}{x^{3}}[/latex]
[latex]\int[/latex] (x + + [latex]\frac{1}{x}[/latex])3 dx = [latex]\int[/latex] (x3 + 3x + [latex]\frac{3}{x}[/latex] + [latex]\frac{1}{x^{3}}[/latex]) dx
= [latex]\int[/latex] x3 dx + 3 [latex]\int[/latex] x dx + 3 [latex]\int[/latex] [latex]\frac{\mathrm{dx}}{\mathrm{x}}[/latex] + [latex]\int[/latex] [latex]\frac{d x}{x^{3}}[/latex]
= [latex]\frac{x^{4}}{4}[/latex] + [latex]\frac{3 x^{2}}{2}[/latex] + 3 log x – [latex]\frac{1}{2 x^{2}}[/latex] + C

Question 43.
Find [latex]\int \sqrt{1+\sin 2 x}[/latex] dx on R.
Solution:
1 + sin 2x = sin2 x + cos2 x + 2 sin x . cos x
= (sin x + cos x)2
[latex]\sqrt{1+\sin 2 x}[/latex] = sin x + cos x
If 2nπ – [latex]\frac{\pi}{4}[/latex] ≤ x ≤ 2nπ + [latex]\frac{3\pi}{4}[/latex]
= -(sin x + cos x). otherwise
If 2nπ – [latex]\frac{\pi}{4}[/latex] ≤ x ≤ 2nπ + [latex]\frac{3\pi}{4}[/latex], then
[latex]\int \sqrt{1+\sin 2 x}[/latex] dx = [latex]\int[/latex] (sin x + cos x)dx
= -cos x + sin x + C
If 2nπ + [latex]\frac{3\pi}{4}[/latex] ≤ x ≤ 2nπ + [latex]\frac{7\pi}{4}[/latex]
[latex]\int \sqrt{1+\sin 2 x}[/latex]
= [latex]\int[/latex] -(sin x + cos x)dx
= -[latex]\int[/latex] sin x dx – [latex]\int[/latex] cos x dx
= cos x – sin x + c

Question 44.
Evaluate [latex]\int \frac{2 x^{3}-3 x+5}{2 x^{2}}[/latex] dx for x > 0 and verify the result by differentiation.
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 29
and it is the given expression and hence the result is correct.

Inter 2nd Year Maths 2B Integration Important Questions

Question 45.
Evaluate [latex]\int \frac{x^{5}}{1+x^{12}}[/latex] dx on R.
Solution:
We define f : R → R by f(t) = [latex]\frac{1}{1+t^{2}}[/latex]
g : R → R by g(x) = x6
Then g'(x) = 6x5
Define F : R → R by F(t) = tan-1 t
F is the primitive of f
[latex]\int \frac{x^{5}}{1+x^{12}}[/latex] dx = [latex]\frac{1}{6}[/latex] [latex]\int[/latex] f(g(x)) g'(x) dx
= [latex]\frac{1}{6}[/latex] (F(t) + C)t=g(x)
= [latex]\frac{1}{6}[/latex] [tan-1 t + C]t=x6
= [latex]\frac{1}{6}[/latex] tan-1 x6 + C

Question 46.
Evaluate [latex]\int[/latex] cos3 x sin x dx on R.
Solution:
We define : f = R → R by f(x) = cosx
∴ f'(x) = – sin x
[latex]\int[/latex] cos3 x sin x dx = [latex]\int[/latex] (f(x))3 [-f'(x)] dx
= [latex]\frac{-[f(x)]^{4}}{4}[/latex] + C
= [latex]\frac{-\cos ^{4} x}{4}[/latex] + C

Question 47.
Find [latex]\int[/latex] (1 – [latex]\frac{1}{x^{2}}[/latex]) e(x + [latex]\frac{1}{x}[/latex]) dx on I where I = (0, ∞)
Solution:
Let J = I = (0, ∞)
Define f : I → R by f(t) = et and g : J → R by g(x) = x + [latex]\frac{1}{x}[/latex]
Then g(J) ⊂ I, g'(x) = 1 – [latex]\frac{1}{x^{2}}[/latex]
[latex]\int[/latex] (1 – [latex]\frac{1}{x^{2}}[/latex]) e(x + [latex]\frac{1}{x}[/latex]) dx = [latex]\int[/latex] f (g(x)) g'(x) dx
= [latex]\int[/latex] [f(t)dt]t = g(x)
= [[latex]\int[/latex]et dt]t = g(x)
= [et + c]t=x+[latex]\frac{1}{x}[/latex]
= e(x+[latex]\frac{1}{x}[/latex]) + C

Inter 2nd Year Maths 2B Integration Important Questions

Question 48.
Evaluate [latex]\int \frac{1}{\sqrt{\sin ^{-1} x} \sqrt{1-x^{2}}}[/latex] dx on I = (0, 1).
Solution:
We define f : I → R by f(x) = sin-1x
f'(x) = [latex]\frac{1}{\sqrt{1-x^{2}}}[/latex]
[latex]\int \frac{1}{\sqrt{\sin ^{-1} x} \sqrt{1-x^{2}}}[/latex] dx = [latex]\int \frac{f^{\prime}(x)}{\sqrt{f(x)}} d x[/latex]
= 2[latex]\sqrt{f(x)}[/latex] + C
= 2 [latex]\sqrt{\sin ^{-1} x}[/latex] + C

Question 49.
Evaluate [latex]\int \frac{\sin ^{4} x}{\cos ^{6} x}[/latex] dx, x ∈ I ⊂ R \ {[latex]\frac{(2 n+1) \pi}{2}[/latex] : n ∈ z}
Solution:
[latex]\int \frac{\sin ^{4} \dot{x}}{\cos ^{6} x}[/latex] dx = [latex]\int[/latex] tan4 x . sec2 x dx
We define f : I → R by f(x)
f(x) = tan x, then f'(x) = sec2x
[latex]\int \frac{\sin ^{4} \dot{x}}{\cos ^{6} x}[/latex] dx = [latex]\int[/latex] [f(x)]4 . f'(x) dx = [latex]\frac{[f(x)]^{5}}{5}[/latex] + C.
= [latex]\frac{1}{5}[/latex] tan5x + C.

Question 50.
Evaluate [latex]\int[/latex] sin2 x dx on R.
Solution:
[latex]\int[/latex] sin2x dx = [latex]\int \frac{(1-\cos 2 x)}{2}[/latex] dx
= [latex]\frac{1}{2}[/latex] [latex]\int[/latex] dx – [latex]\frac{1}{2}[/latex] [latex]\int[/latex] cos 2x dx
= [latex]\frac{1}{2}[/latex] x – [latex]\frac{1}{4}[/latex] sin 2x + C.
(since [latex]\int[/latex] cos 2x dx = [latex]\frac{1}{2}[/latex] sin 2x + C)

Question 51.
Evaluate [latex]\int \frac{1}{a \sin x+b \cos x}[/latex] dx where a, b ∈ R and a2 + b2 ≠ 0 on R.
Solution:
We can find real numbers r and θ such that
a = r cos θ, b = r sin θ
Then r = [latex]\sqrt{a^{2}+b^{2}}[/latex], cos θ = [latex]\frac{a}{r}[/latex] and sin θ = [latex]\frac{b}{r}[/latex]
a sin x + b cos x = r . cos θ sin x + r sin θ cos x
= r[cos θ sin x + sin θ cos x]
= r sin (x + θ)
[latex\int \frac{d x}{a \sin x+b \cos x}=\frac{1}{r} \int \frac{1}{\sin (x+\theta)} d x[/latex]
= [latex]\frac{1}{r}[/latex] (cosec (x + θ) dx
= [latex]\frac{1}{r}[/latex] log |tan [latex]\frac{1}{2}[/latex](x + θ)| + C
= [latex]\frac{1}{\sqrt{a^{2}+b^{2}}} \log \left|\tan \frac{1}{2}(\tilde{x}+\theta)\right|+c[/latex]
For all x ∈ I where I is an interval disjoint with {nπ – θ : n ∈ z}.

Inter 2nd Year Maths 2B Integration Important Questions

Question 52.
Find [latex]\int \frac{x^{2}}{\sqrt{x+5}}[/latex] dx on (-5, ∞)
Solution:
Put t = x + 5 so that t > 0 on (-5, ∞)
dx = dt and x = t – 5
Inter 2nd Year Maths 2B Integration Important Questions 30

Question 53.
Find [latex]\int \frac{x}{\sqrt{1-x}}[/latex] dx, x ∈ I = (0, 1)
Solution:
We define f : I → R by f(x) = [latex]\frac{x}{\sqrt{1-x}}[/latex]
Let J = (0, [latex]\frac{\pi}{2}[/latex])
Define Φ : J → I by Φ(θ) = sin2 θ
Then Φ is a bijective mapping from J to I Further Φ and Φ-1 are differentiable on their respective domains.
put x = Φ(θ) = sin2θ
dx = 2 sin θ . cos θ dθ
Inter 2nd Year Maths 2B Integration Important Questions 31

Question 54.
Evaluate [latex]\int \frac{d x}{(x+5) \sqrt{x+4}}[/latex] on (-4, ∞)
Solution:
Let I = (-4, ∞)
Define f on I as f(x) = [latex]\frac{d x}{(x+5) \sqrt{x+4}}[/latex]
Let J = (0, ∞)
We define Φ : J → I by Φ(t) = t2 – 4
Then Φ is differentiable and is a bijection
Put x = Φ(t) = t2 – 4
then t = [latex]\sqrt{x+4}[/latex] ⇒ dx = 2t dt
Thus [latex]\int \frac{d x}{(x+5) \sqrt{x+4}}[/latex] = [latex]\int \frac{2 t d t}{\left(t^{2}+1\right) t}[/latex]
= [latex]\int \frac{2 d t}{t^{2}+1}[/latex]
= 2 tan-1 t + C
= 2 tan-1 ([latex]\sqrt{x+4}[/latex]) + C

Inter 2nd Year Maths 2B Integration Important Questions

Question 55.
Evaluate [latex]\int \frac{d x}{\sqrt{4-9 x^{2}}}[/latex] on I = (-[latex]\frac{2}{3}[/latex], [latex]\frac{2}{3}[/latex])
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 32

Question 56.
Evaluate [latex]\int \frac{1}{a^{2}-x^{2}}[/latex] dx for x ∈ I = (-a, a)
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 33

Question 57.
Evaluate [latex]\int \frac{1}{1+4 x^{2}}[/latex] dx on R.
Solution:
[latex]\int \frac{1}{1+4 x^{2}}[/latex] dx = [latex]\int \frac{d x}{4\left(\left(\frac{1}{2}\right)^{2}+x^{2}\right)}[/latex]
= [latex]\frac{1}{4}[/latex] (2 tan-1 2x) + C
= [latex]\frac{1}{2}[/latex] tan-1 2x + C

Question 58.
Find [latex]\int \frac{1}{\sqrt{4-x^{2}}}[/latex] dx on (-2, 2).
Solution:
[latex]\int \frac{1}{\sqrt{4-x^{2}}}[/latex] dx = [latex]\int \frac{1}{\sqrt{2^{2}-x^{2}}}[/latex] dx = sin-1([latex]\frac{x}{2}[/latex] dx) + C

Question 59.
Evaluate [latex]\int \sqrt{4 x^{2}+9}[/latex] dx on R.
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 34

Inter 2nd Year Maths 2B Integration Important Questions

Question 60.
Evaluate [latex]\int \sqrt{9 x^{2}-25} d x[/latex] on [[latex]\frac{5}{3}[/latex], ∞)
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 35

Question 61.
Evaluate [latex]\int \sqrt{16-25 x^{2}}[/latex] dx on ([latex]\frac{-4}{5}[/latex], [latex]\frac{4}{5}[/latex])
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 36

Question 62.
Evaluate [latex]\int[/latex] x sin-1x dx on (-1, 1).
Solution:
Let u(x) = sin-1 x and v(x) = [latex]\frac{x^{2}}{2}[/latex] so that
v'(x) = x
∴ u(x) v'(x) = x sin-1x
Even though the domain of u is (-1, 1) the function u ¡s differentiable only on (-1, 1).
From the same formula, we have
Inter 2nd Year Maths 2B Integration Important Questions 37
Inter 2nd Year Maths 2B Integration Important Questions 38

Inter 2nd Year Maths 2B Integration Important Questions

Question 63.
Evaluate [latex]\int[/latex] x2 cos x dx.
Solution:
Let us take u(x) = x2, v(x) = sin x
so that v'(x) = cos x
u(x) v'(x) = x2 cosx
By using the formula for integration by parts, we have
[latex]\int[/latex] x2 cos x dx = x2 sin x – [latex]\int[/latex] sin x (x2)’ dx
= x2 sin x – 2 [latex]\int[/latex] x sin x dx + C.
Again, by applying the formula for integration by parts to
[latex]\int[/latex] x sin x dx, we get
[latex]\int[/latex] x. sin x dx = -x cos x – [latex]\int[/latex] (-cos x) dx
= -x cos x + sin x + C2
[latex]\int[/latex] x2 cos x dx = x2 sin x – 2(sin x – x cos x) + C
= x2 sin x – 2 sin x + 2x cosx + C
= (x2 – 2) sin x + 2x cos x + C
In evaluating certain integrals by using the formula for integration by parts,, twice or more than twice, we come across the given integral with change of sign. This enables us to evaluate the given integral.

Question 64.
Evaluate [latex]\int[/latex] ex sin x dx on R.
Solution:
Let A = ex sin x dx on R
A = [latex]\int[/latex] ex . sin x dx = [latex]\int[/latex] ex (-cos x)’ dx.
= ex (-cos x) – [latex]\int[/latex] (-cos x) (ex)’ dx
= – ex cos x + [latex]\int[/latex] ex cos x dx + C1 ………(1)
[latex]\int[/latex] ex cos x dx = ex. sin x – [latex]\int[/latex] ex . sin x dx
= ex sinx – A …………….. (2)
From (1) and (2)
A = – ex cos x + ex sin x – A + C1
2A = ex (sin x – cos x) + C1
A = [latex]\frac{1}{2}[/latex] ex (sin x – cos x) + C where
C = [latex]\frac{C_{1}}{2}[/latex]
i.e., [latex]\int[/latex] ex sin x dx = [latex]\frac{1}{2}[/latex] ex (sin x – cos x) + C.

Inter 2nd Year Maths 2B Integration Important Questions

Question 65.
Find [latex]\int[/latex] eax cos (bx + c) dx on R, where a. b, c are real numbers and b ≠ 0.
Solution:
Let A = [latex]\int[/latex] eax cos (bx + c)dx
Then from the formula for integration by parts
A = eax [[latex]\frac{\sin (b x+c)}{b}[/latex]] – [latex]\int[/latex] a eax [[latex]\frac{\sin (b x+c)}{b}[/latex]] dx
= [latex]\frac{1}{b}[/latex] eax sin(bx + c) – [latex]\frac{a}{b}[/latex] [latex]\int[/latex] eax . sin(bx + c) dx
Inter 2nd Year Maths 2B Integration Important Questions 39
By taking c = 0, we get
[latex]\int[/latex] eax . cos bx dx = [latex]\frac{e^{a x}}{a^{2}+b^{2}}[/latex] [a cos bx + b sin bx] + K

Question 66.
Evaluate [latex]\int \tan ^{-1} \sqrt{\frac{1-x}{1+x}}[/latex] dx, on (-1, 1)
Solution:
Put x = cos θ, θ ∈ (0, π) dx = -sin θ . dθ
Inter 2nd Year Maths 2B Integration Important Questions 40

Question 67.
Evaluate [latex]\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x[/latex] on I ⊂ R \ {2nπ : n ∈ z}.
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 41
= -ex . cot [latex]\frac{x}{2}[/latex] + C

Inter 2nd Year Maths 2B Integration Important Questions

Question 68.
Evaluate [latex]\int \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) d x[/latex] on I ⊂ R \ {-1, 1}
Solution:
Let x = tan θ ⇒ dx = sec2 θ dθ
[latex]\frac{2 x}{1-x^{2}}=\frac{2 \tan \theta}{1-\tan ^{2} \theta}[/latex] = tan 2θ
tan-1 [latex]\left(\frac{2 x}{1-x^{2}}\right)[/latex] = tan-1 (tan 2θ ) = 2θ + nπ
Where n = 0 if |x| < 1 = -1 if x > 1
= 1 if x < -1
We have dθ = [latex]\frac{1}{1+x^{2}}[/latex] dx and
1 + x2 = 1 + tan2 θ = sec2θ
∴ [latex]\int \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) d x[/latex]
= [latex]\int\left(\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right)\left(1+x^{2}\right) \frac{1}{1+x^{2}} d x[/latex]
= [latex]\int[/latex] (2θ + nπ) [latex]\int[/latex] sec2θ dθ
= 2 [latex]\int[/latex] θ sec2 θ dθ + nπ ) [latex]\int[/latex] sec2 θ dθ + c
= 2 (θ tan θ – [latex]\int[/latex] tan θ dθ) nπ tan θ + c
= 2 (θ tan θ + log |cos θ| + nπ tan θ + c
= (2θ + nπ) tan θ + 2 log cos θ + c
= (2θ + nπ) tan θ + log cos2 θ + c
= (2θ + nπ) tan θ + log sec2 θ + c
= x tan-1 [latex]\left(\frac{2 x}{1-x^{2}}\right)[/latex] – log (1 + x2) + c

Question 69.
Find [latex]\int x^{2} \cdot \frac{\exp \left(m \sin ^{-1} x\right)}{\sqrt{1-x^{2}}}[/latex]dx on (-1, 1) where m is a real number. (Here for y ∈ R, exp. {y} stands for ey).
Solution:
Let t = sin-1x, then
Inter 2nd Year Maths 2B Integration Important Questions 42
Inter 2nd Year Maths 2B Integration Important Questions 43
Inter 2nd Year Maths 2B Integration Important Questions 44

Inter 2nd Year Maths 2B Integration Important Questions

Question 70.
Evaluate [latex]\int \frac{d x}{4 x^{2}-4 x-7}[/latex]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 45

Question 71.
Find [latex]\int \frac{d x}{5-2 x^{2}+4 x}[/latex]
Solution:
5 – 2x2 + 4x = -2 (x2 – 2x – [latex]\frac{5}{2}[/latex])
= -2 ((x – 1)2 – [latex]\frac{5}{2}[/latex] – 1)
= -2 ((x – 1)2 – [latex]\left(\sqrt{\frac{7}{2}}\right)^{2}[/latex])
[latex]\int \frac{d x}{5-2 x^{2}+4 x}[/latex]
= [latex]-\frac{1}{2} \int \frac{1}{\left((x-1)^{2}-\sqrt{\frac{7}{2}}\right)^{2}} d x+C[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 46

Question 72.
Evaluate [latex]\int \frac{d x}{x^{2}+x+1}[/latex]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 47

Question 73.
Evaluate [latex]\int \frac{d x}{\sqrt{x^{2}+2 x+10}}[/latex]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 48

Inter 2nd Year Maths 2B Integration Important Questions

Question 74.
Evaluate [latex]\int \frac{d x}{\sqrt{1+x-x^{2}}}[/latex]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 49

Question 75.
Evaluate [latex]\int \sqrt{3+8 x-3 x^{2}} d x[/latex]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 50
Inter 2nd Year Maths 2B Integration Important Questions 51
Inter 2nd Year Maths 2B Integration Important Questions 52

Question 76.
Evaluate [latex]\int \frac{x+1}{x^{2}+3 x+12}[/latex] dx.
Solution:
We write x + 1 = A(2x + 3) + B
Equating the co-efficients of x; we get 1 = 2A.
A = [latex]\frac{1}{2}[/latex]
Equating the constants 3A + B = 1
B = 1 – 3A = 1 – [latex]\frac{3}{2}[/latex] = -[latex]\frac{1}{2}[/latex]
x + 1 = [latex]\frac{1}{2}[/latex] (2x + 3) – [latex]\frac{1}{2}[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 53

Inter 2nd Year Maths 2B Integration Important Questions

Question 77.
Evaluate [latex]\int(3 x-2) \sqrt{2 x^{2}-x+1} d x[/latex]
Solution:
Let (3x – 2) = A(4x – 1) + B
Equating the co-efficients of x, we get 3 = 4A
A = [latex]\frac{3}{4}[/latex]
Equating the constants -2 = -A + B
B = -2 + A = -2 + [latex]\frac{3}{4}[/latex]
= [latex]\frac{-5}{4}[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 54
Inter 2nd Year Maths 2B Integration Important Questions 55

Question 78.
Evaluate [latex]\int \frac{2 x+5}{\sqrt{x^{2}-2 x+10}}[/latex]dx. [T.S. Mar. 15]
Solution:
We write
2x + 5 = A [latex]\frac{\mathrm{d}}{\mathrm{dx}}[/latex] (x2 – 2x + 10) + B
= A (2x – 2) + B
On comparing the coefficients of the like powers of x on both sides of the above equation, we get A = 1 and B = 7.
Thus 2x + 5 = (2x – 2) + 7
Hence [latex]\int \frac{2 x+5}{\sqrt{x^{2}-2 x+10}}[/latex]dx
= [latex]\int \frac{2 x-2}{\sqrt{x^{2}-2 x+10}} d x+7 \int \frac{d x}{\sqrt{x^{2}-2 x+10}}+C[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 56

Inter 2nd Year Maths 2B Integration Important Questions

Question 79.
Evaluate [latex]\int \frac{d x}{(x+5) \sqrt{x+4}}[/latex]
Solution:
Put t = [latex]\sqrt{x+4}[/latex]
dt = [latex]\frac{1}{2 \sqrt{x+4}}[/latex] dx
We have t2 = x + 4
x + 5 = t2 + 1
[latex]\int \frac{d x}{(x+5)(\sqrt{x+4})}=\int \frac{2}{t^{2}+1} d t[/latex]
= 2 tan-1 t + C
= 2 tan-1 ([latex]\sqrt{x+4}[/latex]) + C.

Question 80.
Evaluate [latex]\int \frac{d x}{5+4 \cos x}[/latex]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 57

Question 81.
Find [latex]\int \frac{d x}{3 \cos x+4 \sin x+6}[/latex] [Mar. 13]
Solution:
t = tan [latex]\frac{x}{2}[/latex] ⇒ dx = [latex]\frac{2 d t}{1+t^{2}}[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 58
Inter 2nd Year Maths 2B Integration Important Questions 59

Question 82.
Find [latex]\int \frac{d x}{d+e \tan x}[/latex]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 60
Inter 2nd Year Maths 2B Integration Important Questions 61

Inter 2nd Year Maths 2B Integration Important Questions

Question 83.
Evaluate [latex]\int \frac{\sin x}{d \cos x+e \sin x} d x[/latex] and [latex]\int \frac{\cos x}{d \cos x+e \sin x} d x[/latex].
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 62
Inter 2nd Year Maths 2B Integration Important Questions 63

Question 84.
Evaluate [latex]\int \frac{\cos x+3 \sin x+7}{\cos x+\sin x+1} d x[/latex]
Solution:
Let cos x + 3 sin x + 7 = A(cos x + sin x + 1)’ + B(cos x + sin x + 1) + C
Comparing the coefficients
A + B = 1, A – B = 3, B + C = 7
A = -1, B = 2, C = 5
Inter 2nd Year Maths 2B Integration Important Questions 64
Inter 2nd Year Maths 2B Integration Important Questions 65

Inter 2nd Year Maths 2B Integration Important Questions

Question 85.
Find [latex]\int \frac{x^{3}-2 x+3}{x^{2}+x-2}[/latex] dx.
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 66
Inter 2nd Year Maths 2B Integration Important Questions 67

Question 86.
Find [latex]\int \frac{d x}{x^{2}-81}[/latex]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 68

Inter 2nd Year Maths 2B Integration Important Questions

Question 87.
Find [latex]\int \frac{2 x^{2}-5 x+1}{x^{2}\left(x^{2}-1\right)}[/latex] dx.
Solution:
Let [latex]\frac{2 x^{2}-5 x+1}{x^{2}\left(x^{2}-1\right)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{x-1}+\frac{D}{x+1}[/latex]
2x2 – 5x + 1 = Ax(x2 – 1) + B(x2 – 1) + Cx2 (x + 1) + Dx2 (x – 1)
x = 1 ⇒ 2 – 5 + 1 = C (1 + 1) ⇒ 2C = -2
⇒ C = -1
x = -1 ⇒ 2 + 5 + 1 = D (-1 -1)
⇒ 8 = -2B ⇒ D = -4
x = 0 ⇒ 1 = B(-1) ⇒ B = -1
Equating the coefficients of x3
0 = A + C + D ⇒ A = -C – D = 1 + 4 = 5
Inter 2nd Year Maths 2B Integration Important Questions 69

Question 88.
Find [latex]\int \frac{3 x-5}{x\left(x^{2}+2 x+4\right)}[/latex] dx.
Solution:
[latex]\frac{3 x-5}{x\left(x^{2}+2 x+4\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+2 x+4}[/latex]
3x – 5 = A(x2 + 2x + 4) + (Bx + C) . x
x = 0 ⇒ -5 = 4 A ⇒ A = -[latex]\frac{5}{4}[/latex]
Equating the coefficients of x2
A + B = 0 ⇒ B = -A = [latex]\frac{5}{4}[/latex]
Equating the coefficient of x
3 = 2 A + C
C = 3 – 2 A = 3 + 2 . [latex]\frac{5}{4}[/latex] = [latex]\frac{11}{2}[/latex]
Inter 2nd Year Maths 2B Integration Important Questions 70
Inter 2nd Year Maths 2B Integration Important Questions 71

Inter 2nd Year Maths 2B Integration Important Questions

Question 89.
Find [latex]\int \frac{2 x+1}{x\left(x^{2}+4\right)^{2}} d x[/latex]
Solution:
Let [latex]\frac{2 x+1}{x\left(x^{2}+4\right)^{2}}=\frac{A}{x}+\frac{B x+C}{x^{2}+4}+\frac{D x+E}{\left(x^{2}+4\right)^{2}}[/latex]
2x + 1 = A (x2 + 4)2 + (Bx + C) + x (x2 + 4) + (Dx + E)x
Equating the coefficients of like power of x, we obtain
A + B = 0, C = 0, 8A + 4B + D = 0,
4C + E = 2, A = [latex]\frac{1}{16}[/latex]
Solving these equation, we obtain
Inter 2nd Year Maths 2B Integration Important Questions 72
Inter 2nd Year Maths 2B Integration Important Questions 73

Question 90.
Evaluate [latex]\int[/latex] x3 . e5x dx.
Solution:
We take a = 5, use the reduction formula
Inter 2nd Year Maths 2B Integration Important Questions 74
Inter 2nd Year Maths 2B Integration Important Questions 75

Question 91.
Evaluate [latex]\int[/latex] sin4 x dx. [Mar. 14]
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 76
Inter 2nd Year Maths 2B Integration Important Questions 77

Inter 2nd Year Maths 2B Integration Important Questions

Question 92.
Evaluate [latex]\int[/latex] tan6 x dx.
Solution:
Inter 2nd Year Maths 2B Integration Important Questions 78

Question 93.
[latex]\int[/latex] sec5 x dx.
Solution:
Reduction formula is
Inter 2nd Year Maths 2B Integration Important Questions 79

Inter 2nd Year Maths 2B Hyperbola Important Questions

Students get through Maths 2B Important Questions Inter 2nd Year Maths 2B Hyperbola Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2B Hyperbola Important Questions

Question 1.
Find the equations of the hyperbola whose foci are (±5, 0) the transverse axis is of length 8. [T.S. Mar. 16; May 11]
Solution:
Foci are S(±5,0) ∴ ae = 5
Length of transverse axis = 2a = 8
a = 4
e = [latex]\frac{5}{4}[/latex]
b2 = a2(e2 – 1) = 16([latex]\frac{25}{16}[/latex] – 1) = 9
Equation of the hyperbola is [latex]\frac{x^{2}}{16}[/latex] – [latex]\frac{y^{2}}{9}[/latex] = 1
9x2 – 16y2 = 144.

Inter 2nd Year Maths 2B Hyperbola Important Questions

Question 2.
If the eccentricity of a hyperbola is [latex]\frac{5}{4}[/latex], then find the eccentricity of its conjugate-hyperbola. [AP Mar. 16] [TS Mar. 15, 13]
Solution:
If e and e1, are the eccentricity of a hyper bola and its conjugate hyperbola, then
[latex]\frac{1}{\mathrm{e}^{2}}[/latex] + [latex]\frac{1}{\mathrm{e}_{1}^{2}}[/latex] = 1
Given e = [latex]\frac{5}{4}[/latex] = [latex]\frac{16}{25}[/latex] + [latex]\frac{1}{\mathrm{e}_{1}^{2}}[/latex] = 1
[latex]\frac{1}{\mathrm{e}_{1}^{2}}[/latex] = 1 – [latex]\frac{16}{25}[/latex] = [latex]\frac{9}{25}[/latex] e12 = [latex]\frac{25}{9}[/latex]
e1 = [latex]\frac{5}{3}[/latex]

Question 3.
Find the centre, foci, eccentricity equation of the directrices, length of the latus rectum of the x2 – 4y2 = 4 hyperbola. [A.P. Mar. 16; May 11]
Solution:
Equation of the hyperbola is [latex]\frac{x^{2}}{4}[/latex]- [latex]\frac{y^{2}}{1}[/latex] = 1
a2 = 4, b2 = 1
Centre is c (0, 0)
a2e2 = a2 + b2 = 4 + 1 = 5
ae = [latex]\sqrt{5}[/latex]
Foci are (±ae, 0) = (±[latex]\sqrt{5}[/latex], 0)
Eccentricity = [latex]\frac{\mathrm{ae}}{\mathrm{a}}[/latex] = [latex]\frac{\sqrt{5}}{2}[/latex]
Equations of directrices are x = ± [latex]\frac{\mathrm{ae}}{\mathrm{a}}[/latex]
= ± 2 . [latex]\frac{2}{\sqrt{5}}[/latex]
⇒ [latex]\sqrt{5}[/latex] x = ± 4
⇒ [latex]\sqrt{5}[/latex] x ± 4 = 0
Length of the latus rectum = [latex]\frac{2 b^{2}}{a}[/latex] = [latex]\frac{2.1}{2}[/latex] = 1

Inter 2nd Year Maths 2B Hyperbola Important Questions

Question 4.
Find the equations of the tangents to the hyperbola 3x2 – 4y2 = 12 which are
i) Parallel and
ii) Perpendicular to the line y = x – 7. [AP Mar. 15]
Solution:
i) Equation of the hyperbola is 3x2 – 4y2 = 12
[latex]\frac{x^{2}}{4}[/latex] – [latex]\frac{y^{2}}{3}[/latex] = 1
a2 = 4, b2 = 3.
The tangent is parallel to y = x – 7
m = slope of the tangent = 1
Equation of the parallel tangents are
y = mx ± [latex]\sqrt{a^{2} m^{2}-b^{2}}[/latex]
y = x ± [latex]\sqrt{4-3}[/latex]
y = x ± 1

ii) The tangent is perpendicular to y – x = 7
m – slope of the tangent = (-1)
Equation of the perpendicular tangents are
y = (-1) x ± [latex]\sqrt{4(-1)^{2}-3}[/latex]
= -x ± 1
x + y = ± 1.

Question 5.
If 3x – 4y – k = 0 is a tangent to x2 – 4y2 = 5, find value of k. [T.S. Mar. 17]
Solution:
Equation of the hyperbola x2 – 4y2 = 5
[latex]\frac{x^{2}}{5}[/latex] – [latex]\frac{y^{2}}{\left(\frac{5}{4}\right)}[/latex] = 1
a2 = 5, b2 = [latex]\frac{5}{4}[/latex]
Equation of the given line is 3x — 4y + k = 0
4y = 3x + k
y = [latex]\frac{3}{4}[/latex] x + [latex]\frac{k}{4}[/latex]
m = [latex]\frac{3}{4}[/latex], c = [latex]\frac{k}{4}[/latex],
Condition for tangency is c2 = a2m2 – b2
[latex]\frac{\mathrm{k}^{2}}{16}[/latex] = 5 . [latex]\frac{9}{16}[/latex] – [latex]\frac{5}{4}[/latex]
k2 = 45 – 20 = 25
k = ± 5.

Inter 2nd Year Maths 2B Hyperbola Important Questions

Question 6.
Find the equations of the tangents to the hyperbola x2 – 4y2 = 4 Which are
i) Parallel
ii) Perpendicular to the line x + 2y = 0. [T.S. Mar. 15, Mar. 14, 11; May 06]
Solution:
Equation of the hyperbola is
x2 – 4y2 = 4
[latex]\frac{x^{2}}{4}[/latex] – [latex]\frac{y^{2}}{1}[/latex] = 1
a2 = 4, b2 = 1
i) The tangent is parallel to x + 2y = 0
m = -[latex]\frac{1}{2}[/latex]
c2 = a2m2 – b2 = 4 . [latex]\frac{1}{4}[/latex] = 1 – 1 = 0
c = 0
Equation of the parallel tangent is
y = mx + c
= -[latex]\frac{1}{2}[/latex] x
2y = -x
x + 2y = 0.

ii) The tangent is perpendicular to x + 2y = 0
Slope of the tangent = m = [latex]\frac{-1}{\left(-\frac{1}{2}\right)}[/latex] = 2
c2 = a2m2 – b2 = 4 . 4 – 1 = 153
c = ±[latex]\sqrt{15}[/latex]
Equation of the perpendicular tangent is
y = 2x ± [latex]\sqrt{15}[/latex]

Question 7.
Prove that the point of intersection of two perpendicular tangents to the hyperbola [latex]\frac{x^{2}}{a^{2}}[/latex] – [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 lies on the circle x2 + y2 = a2 – b2. [T.S. Mar. 16]
Solution:
Let P (x1, y1) be the point of intersection of two perpendicular tangents to the hyperbola
[latex]\frac{x^{2}}{a^{2}}[/latex] – [latex]\frac{x^{2}}{b^{2}}[/latex] = 1
Equation of the tangent can be taken as
y = mx ± [latex]\sqrt{a^{2} m^{2}-b^{2}}[/latex]
This tangent passes through P (x1, y1)
y1 = mx1 ± [latex]\sqrt{a^{2} m^{2}-b^{2}}[/latex]
(y1 – mx1)2 = a2m2 – b2
y12 + m2x12 – 2mx1y1 = a2m2 – b2
m2x12 – a2m2 – 2mx1y1 + y12 + b2 = 0
m2(x12 – a2) – 2mx1y1 + (y12 + b2) = 0
This is a quadratic in m giving the values say m1, m1 which are the slopes of the tangents
passing through P
The tangents are perpendicular
⇒ m1m2 = – 1
[latex]\frac{y_{1}^{2}+b^{2}}{x_{1}^{2}-a^{2}}[/latex] = – 1 ⇒ y12 + b2
x12 + y12 = a2 – b2
focus of P (x1, y1) is x2 + y2 = a2 – b2.
This circle is called director circle of the hyperbola.

Inter 2nd Year Maths 2B Hyperbola Important Questions

Question 8.
If e, e1 are the eccentricities of a hyperbola and its conjugate hyperbola prove that [latex]\frac{1}{e^{2}}[/latex] + [latex]\frac{1}{\mathrm{e}_{1}^{2}}[/latex] = 1 [Mar. 11]
Solution:
Equation of the hyperbola is [latex]\frac{x^{2}}{a^{2}}[/latex] – [latex]\frac{x^{2}}{b^{2}}[/latex] = 1
∴ b2 = a2(e2 – 1) ⇒ e2 – 1 = [latex]\frac{b^{2}}{a^{2}}[/latex]
e2 = 1 + [latex]\frac{b^{2}}{a^{2}}[/latex] = [latex]\frac{a^{2}+b^{2}}{a^{2}}[/latex]
∴ [latex]\frac{1}{\mathrm{e}^{2}}[/latex] = [latex]\frac{a^{2}}{a^{2}+b^{2}}[/latex] …………… (1)
Equation of the conjugate hyperbola is
Inter 2nd Year Maths 2B Hyperbola Important Questions 1

Question 9.
Find the centre eccentricity, foci, directrices and length of the latus rectum of the following hyperbolas.
i) 4x2 – 9y2 – 8x – 32 = 0
ii) 4 (y + 3)2 – 9(x – 2)2 = 1.
Solution:
i) 4x2 – 9y2 – 8x – 32 = 0
4(x2 – 2x) – 9y2 = 32
4(x2 – 2x + 1) – 9y2 = 36
[latex]\frac{(x-1)^{2}}{9}[/latex] – [latex]\frac{(y)^{2}}{4}[/latex] = 1
Centre of the hyperbola is C (1, 0)
a2 = 9, b2 = 4 ⇒ a = 3, b = 2
e = [latex]\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}=\sqrt{\frac{9+4}{9}}=\frac{\sqrt{13}}{3}[/latex]
Foci are (1±3. [latex]\frac{\sqrt{13}}{3}[/latex], 0) = (1±[latex]\sqrt{13}[/latex], 0)
Equations of differences are x = 1 ± [latex]\frac{3.3}{\sqrt{13}}[/latex]
⇒ x = 1 ± [latex]\frac{9}{\sqrt{13}}[/latex]
Length of the latus rectum = [latex]\frac{2 b^{2}}{a}[/latex]
= [latex]\frac{2.4}{3}[/latex] = [latex]\frac{8}{3}[/latex]

ii) The equation of the hyperbola is
4 (y + 3)2 – 9 (x – 2)2 = 1
[latex]\frac{y-(-3)^{2}}{1 / 4}[/latex] = [latex]\frac{(x-2)^{2}}{1 / 9}[/latex] = 1
Centre is C (2, -3)
Semi transverse axis = b = [latex]\frac{1}{2}[/latex]
Semi conjugate axis = a = [latex]\frac{1}{3}[/latex]
Inter 2nd Year Maths 2B Hyperbola Important Questions 2

Question 10.
If e, e1 are the eccentricities of a hyperbola and its conjugate hyperbola prove that [latex]\frac{1}{e^{2}}[/latex] + [latex]\frac{1}{e_{1}^{2}}[/latex] = 1. [Mar. 11]
Solution:
Inter 2nd Year Maths 2B Hyperbola Important Questions 3
Equation of the conjugate hyperbola is
Inter 2nd Year Maths 2B Hyperbola Important Questions 4

Inter 2nd Year Maths 2B Hyperbola Important Questions

Question 11.
i) If the line lx + my = 0 is a tangent to the hyperbola [latex]\frac{x^{2}}{a^{2}}[/latex] – [latex]\frac{y^{2}}{b^{2}}[/latex] = 1, then show that a2l2 – b2m2 = n2.

ii) If the lx + my = 1 is a normal to the hyperbola [latex]\frac{x^{2}}{a^{2}}[/latex] – [latex]\frac{y^{2}}{b^{2}}[/latex] = 1, then show that [latex]\frac{a^{2}}{l^{2}}[/latex] – [latex]\frac{b^{2}}{m^{2}}[/latex] = (a2 + b2)2.
Solution:
i) Equation of the given tangent ¡s
lx + my + n = 0 ……………. (1)
Equation of the tangent P(θ) is
[latex]\frac{x}{a}[/latex] sec θ – [latex]\frac{y}{b}[/latex] tan θ – 1 = 0 …………….. (2)
Comparing (1) and (2)
[latex]\frac{\sec \theta}{a l}[/latex] = [latex]\frac{\tan \theta}{-\mathrm{bm}}[/latex] = [latex]\frac{-1}{n}[/latex]
sec θ = -[latex]\frac{\mathrm{a} l}{\mathrm{n}}[/latex], tan θ = [latex]\frac{\mathrm{bm}}{\mathrm{n}}[/latex]
sec2 θ – tan2θ = 1
= [latex]\frac{a^{2} l^{2}}{n^{2}}[/latex] – [latex]\frac{b^{2} m^{2}}{n^{2}}[/latex] = 1 ⇒ a2l2 – b2m2 = n2.

ii) Equation of the given line is lx + my = 1 ……………. (1)
Equation of the normal at P(θ) is
[latex]\frac{a x}{\sec \theta}[/latex] + [latex]\frac{b y}{\tan \theta}[/latex] = a2 + b2 ……….. (2)
Comparing (1) and (2)
Inter 2nd Year Maths 2B Hyperbola Important Questions 5

Question 12.
Find the equations of the tangents to the hyperbola 3x2 – 4y2 = 12 which are
i) Parallel and ii) Perpendicular to the line y = x – 7. [A.P. Mar. 15]
Solution:
i) Equation of the hyperbola is 3x2 – 4y2 = 12
[latex]\frac{x^{2}}{4}[/latex] – [latex]\frac{y^{2}}{3}[/latex] = 1
a2 = 4, b2 = 3
The tangent is parallel to y = x – 7
m = slope of the tangent = 1
Equation of the parallel tangents are
y = mx ± [latex]\sqrt{a^{2} m^{2}-b^{2}}[/latex]
y = x ± [latex]\sqrt{4-3}[/latex]
y = x ± 1

ii) Th tangent is perpendicular to y – x = 7
m – slope of the tangent = (-1)
Equation of the perpendicular tangents are
y = (-1) x ± [latex]\sqrt{4(-1)^{2}-3}[/latex]
= -x ± 1
x + y = ±1.

Inter 2nd Year Maths 2B Hyperbola Important Questions

Question 13.
Prove that the point of intersection of two perpendicular tangents to the hyperbola [latex]\frac{x^{2}}{a^{2}}[/latex] – [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 lies on the circle x2 + y2 = a2 – b2. [T.S. Mar. 16]
Solution:
Let P (x1, y1) be the point of intersection of two perpendicular tangents to the hyperbola
[latex]\frac{x^{2}}{a^{2}}[/latex] – [latex]\frac{y^{2}}{b^{2}}[/latex] = 1
Equation of the tangent can be taken as
y = mx ± [latex]\sqrt{a^{2} m^{2}-b^{2}}[/latex]
This tangent passes through P (x1, y1)
y1 = mx1 ± [latex]\sqrt{a^{2} m^{2}-b^{2}}[/latex]
(y1 – mx1)2 = a2m2 – b2
y12 + m2x12 – 2mx1y1 = a2m2 – b2
m2x12 – a2m2 – 2mx1y1 + y12 + b2 = 0
m2 (x12 – a2) – 2mx1y1 + (y12 + b2) = 0
This is a quadratic in m giving the values say m1, m2 which are the slopes of the tangents passing through P
The tangents are perpendicular
⇒ m1m2 = – 1
[latex]\frac{y_{1}^{2}+b^{2}}{x_{1}^{2}-a^{2}}[/latex] = -1 ⇒ y12 + b2 = -x12 + a2
x12 + y12 = a2 – b2
focus of P (x1, y1) is x2 + y2 = a2 – b2.
This circle is called director circle of the hyperbola.

Question 14.
A circle cuts the rectangular hyperbola xy = 1 in the points (xr, yr), r = 1, 2, 3, 4. Prove that x1x2x3x4 = y1y2y3y4 = 1.
Solution:
Let the circle be x2 + y2 = a2.
Since (t, [latex]\frac{1}{t}[/latex]) (t ≠ 0) lies on xy = 1, the points of intersection of the circle and the hyperbola are given by
t2 + [latex]\frac{1}{t^{2}}[/latex] = a2
⇒ t4 – a2t2 + 1 = 0
⇒ t4 + 0 . t3 – a2t2 + 0 . t + 1 = 0.
If t1, t2, t3 and t4 are the roots of the above biquadratic, then t1t2t3t4 = 1.
If (xr, yr) = (tr; [latex]\frac{1}{t_{r}}[/latex]), r = 1, 2, 3, 4
then x1x2x3x4 = t1t2t3t4 = 1,
and y1y2y3y4 = [latex]\frac{1}{t_{1} t_{2} t_{3} t_{4}}[/latex] = 1

Inter 2nd Year Maths 2B Hyperbola Important Questions

Question 15.
If four points be taken on a rectangular hyperbola such that the chords joining any two points is perpendicular to the chord joining the other two, and if α, β, γ and δ be the inclinations to either asymptote of the straight lines joining these points to the centre, prove that
tan α tan β tan γ tan δ = 1.
Solution:
Let the equation of the rectangular hyperbola be x2 – y2 = a2. By rotating the X-axis and the Y-axis about the origin through an angle [latex]\frac{\pi}{4}[/latex] in the clockwise sense, the equation x2 – y2 = a2 can be transformed to the form xy = c2.
Let (ctr, [latex]\frac{c}{t_{r}}[/latex]), r = 1, 2, 3, 4 (tr ≠ 0) be four point on the curve. Let the chord joining
A = (ct1, [latex]\frac{c}{t_{1}}[/latex]), B = (ct2, [latex]\frac{c}{t_{2}}[/latex]) be perpendicular to the chord joining C = (ct3, [latex]\frac{c}{t_{3}}[/latex]) and D = (ct4, [latex]\frac{c}{t_{4}}[/latex]).
The slope of [latex]\stackrel{\leftrightarrow}{A B}[/latex] is [latex]\frac{\frac{c}{t_{1}}-\frac{c}{t_{2}}}{c t_{1}-c t_{2}}=\frac{-1}{t_{1} t_{2}}[/latex]
[No chord of the hyperbola can be vertical]
Similarly slope of [latex]\stackrel{\leftrightarrow}{C D}[/latex] is -[latex]\frac{1}{t_{3} t_{4}}[/latex], Since [latex]\stackrel{\leftrightarrow}{A B}[/latex] ⊥ [latex]\stackrel{\leftrightarrow}{C D}[/latex].
[latex]\left(-\frac{1}{t_{1} t_{2}}\right)\left(-\frac{1}{t_{3} t_{4}}\right)[/latex] = -1 ⇒ t1t2t3t4 = -1 ………………… (1)
We know the coordinate axes are the asymptotes of the curve, If [latex]\stackrel{\leftrightarrow}{\mathrm{OA}}[/latex], [latex]\stackrel{\leftrightarrow}{\mathrm{OB}}[/latex], [latex]\stackrel{\leftrightarrow}{\mathrm{OC}}[/latex] and [latex]\stackrel{\leftrightarrow}{\mathrm{OD}}[/latex] make angles α, β, γ and δ with the positive direction of the X-axis, then tan α, tan β, tan γ and tan δ are their respective slopes. [O, the origin is the centre, None of [latex]\stackrel{\leftrightarrow}{\mathrm{OA}}[/latex], [latex]\stackrel{\leftrightarrow}{\mathrm{OB}}[/latex], [latex]\stackrel{\leftrightarrow}{\mathrm{OC}}[/latex] and [latex]\stackrel{\leftrightarrow}{\mathrm{OD}}[/latex] is vertical]
Inter 2nd Year Maths 2B Hyperbola Important Questions 6
If [latex]\stackrel{\leftrightarrow}{\mathrm{OA}}[/latex], [latex]\stackrel{\leftrightarrow}{\mathrm{OB}}[/latex], [latex]\stackrel{\leftrightarrow}{\mathrm{OC}}[/latex] and [latex]\stackrel{\leftrightarrow}{\mathrm{OD}}[/latex] make angles α, β, γ and δ with the other asymptote the Y-axis then cot α, cot β, cot γ and cot δ are their respective inclinations so that
cot α cot β cot γ cot δ = tan α tan β tan γ tan δ = 1.

Inter 2nd Year Maths 2B Ellipse Important Questions

Students get through Maths 2B Important Questions Inter 2nd Year Maths 2B Ellipse Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2B Ellipse Important Questions

Question 1.
Find the value of k if 4x + y + k = 0 is a tangent to the ellipse x2 + 3y2 = 3. [AP Mar. 16, 15]
Solution:
The equation of the ellipse is
x2 + 3y2 = 3
[latex]\frac{x^{2}}{3}[/latex] + [latex]\frac{y^{2}}{1}[/latex] = 1
a2 =, 3, b2 = 1
Equation of the line is 4x + y + k = 0
y = -4x – k .
m = -4c = -k.
Condition for tangency is c2 = a2m2 + b2
(-k)2 = 3 (4)2 + 1 ,
k2 = 48 + 1 = 49
k = ±7.

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 2.
Find the equation of tangents to the ellipse 2x2 + y2 = 8 which are
i) Parallel to x – 2y – 4 = 0 [May. 05, Mar. 06] [T.S. Mar. 17]
Solution:
Slope will be : [latex]\frac{1}{2}[/latex]
Equation of tangent y = mx ± [latex]\sqrt{a^{2} m^{2}+b^{2}}[/latex]
y = [latex]\frac{1}{2}[/latex]x ± [latex]\sqrt{a^{2}\left(\frac{1}{2}\right)^{2}+b^{2}}[/latex]
[latex]\frac{x^{2}}{4}[/latex] + [latex]\frac{y^{2}}{8}[/latex] = 1
y = [latex]\frac{1}{2}[/latex]x ± [latex]\sqrt{4 \times \frac{1}{4}+8}[/latex]
y = [latex]\frac{1}{2}[/latex]x ± 3
2y – x ± 6 = 0 required equation of tangents.
x – 2y ± 6 = 0.

Question 3.
Find the equation of the ellipse in the standard form whose distance between foci is 2 and the length of latus rectum is [latex]\frac{1}{2}[/latex]. [T.S. Mar. 15]
Solution:
Latus rectum = [latex]\frac{15}{2}[/latex]
distance between foci = 2
[latex]\frac{2 b^{2}}{a}[/latex] = [latex]\frac{15}{2}[/latex] ; 2ae = 2
ae = 1
⇒ b2 = a2 – a2 e2
⇒ b2 = a2 – 1
⇒ [latex]\frac{15}{4}[/latex]a = a2 – 1 .
⇒ 4a2 – 15a – 4 = 0
a = 4 or a = -[latex]\frac{1}{4}[/latex]
b2 = a2 – 1
= 16 – 1
Equation of the ellipse is [latex]\frac{x^{2}}{16}[/latex] + [latex]\frac{y^{2}}{15}[/latex] = 1

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 4.
Find the equation of the ellipse in the standard form such that distance between foci is 8 and distance between directrices is 32. [Mar. 06, May. 07]
Solution:
Distance between foci = 8.
Distance between directrices = 32
2ae = 8
ae = 4
[latex]\frac{2 a}{e}[/latex] = 32
[latex]\frac{a}{e}[/latex] = 16
(ae) ([latex]\frac{a}{e}[/latex]) = 64
a2 = 64
b2 = a2 – a2 e2
= 64 – 16 = 48
Equation of the ellipse is
∴ [latex]\frac{x^{2}}{64}[/latex] + [latex]\frac{y^{2}}{48}[/latex] = 1

Question 5.
Find the condition for the line x cos α + y sin α = p to be a tangent to the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1. [Mar. 14]
Solution:
Equation of the ellipse is
Inter 2nd Year Maths 2B Ellipse Important Questions 1

Question 6.
Find the equation of the ellipse with focus at (1, -1) e = [latex]\frac{2}{3}[/latex] and directrix as x + y + 2 = 0. [Mar. 05] [T.S. Mar. 19]
Solution:
P(x1, y1) is any point on the ellipse. Equation of the directrix is
x + y + 2 = 0
Draw PM perpendicular to ZM, Join SP
By Definition of ellipse SP = e. PM
SP2 = e2 . PM2
(x1 – 1)2 + (y1 + 1)2 ([latex]\frac{2}{3}[/latex])2[[latex]\frac{x_{1}+y_{1}+2}{\sqrt{1+1}}[/latex]]2
(x1 – 1)2 + (y1+ 1)2 = [latex]\frac{4}{9} \frac{\left(x_{1}+y_{1}+2\right)^{2}}{2}[/latex]
9[(x1 – 1)2 + (y1 + 1)2] = 2 (x1 + y1 + 2]2
9[x12 – 2x1 + 1 + y12 + 2y1 + 1] = 2[x12 + y12 + 4 + 2x1y1 + 4x1 + 4y1]
9x12 + 9y12 – 18x1 + 18y1 + 18 = 2x12 + 2y12 + 4x1y1 + 8x1 + 8y1 + 8
7x12 – 4x1y1 + 7y12 – 26x1 + 10y1 + 10 = 0
focus of P (x1, y1) is 7x2 – 4xy + 7y2 – 26x + 10y + 10 = 0
This is the equation of the required Ellipse.
Inter 2nd Year Maths 2B Ellipse Important Questions 2

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 7.
L Find tle length of major axis, minor axis, latus rectum, eccentricity, co-ordinates of centre, foci and the equations of directrices of the following ellipse. [TS Mar. 16; Mar. 14]
i) 9x2 + 16y2 = 144
ii) 4x2 + y2 – 8x + 2y + 1 = 0
iii) x2 + 2y2 – 4x + 12y + 14 = 0 [Mar. 11, May 07]
Solution:
Given equation is 9x2 + 16y2 = 144
[latex]\frac{x^{2}}{16}[/latex] + [latex]\frac{y^{2}}{9}[/latex] = 1
∴ a = 4, b = 3
Length of major axis = 2a = 2 . 4 = 8
Length of minor axis = 2b = 2 . 3 = 6
Length of latus rectum = [latex]\frac{2 b^{2}}{a}[/latex] = [latex]\frac{2.9}{4}[/latex] = [latex]\frac{9}{2}[/latex]
Eccentricity = [latex]\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}=\sqrt{\frac{16-9}{16}}=\frac{\sqrt{7}}{4}[/latex]
Centre is C (0, 0)
Foci are (± ae, 0) = ( ± [latex]\sqrt{7}[/latex], 0)
Equations of the directrices are x = ± [latex]\frac{a}{e}[/latex]
x = ± 4 . [latex]\frac{4}{\sqrt{7}}[/latex] = ± [latex]\frac{16}{\sqrt{7}}[/latex]
[latex]\sqrt{7}[/latex]x = ± 16

(ii) Given equation is 4x2 + y2 – 8x + 2y + 1 = 0
4(x2 – 2x) + (y2 + 2y) = – 1
4(x – 1)2 + (y + 1)2 = 4 + 1 – 1 = 4
[latex]\frac{(x-1)^{2}}{1}[/latex] + [latex]\frac{(y+1)^{2}}{4}[/latex] = 1
Hence a < b ⇒ y – axis is major axis
a = 1, b = 2
Length of major axis = 2b = 4
Length of minor axis = 2a = 2
Length of lattis rectum = [latex]\frac{2 a^{2}}{b}[/latex] = [latex]\frac{2}{2}[/latex] = 1
Eccentricity = [latex]\sqrt{\frac{b^{2}-a^{2}}{b^{2}}}=\sqrt{\frac{4-1}{4}}=\frac{\sqrt{3}}{2}[/latex]
Centre is C (-1, 1)
be = 2 . [latex]\frac{\sqrt{3}}{2}[/latex] = [latex]\sqrt{3}[/latex]
Foci are (-1, 1 ± [latex]\sqrt{3}[/latex])
Equations of the directrices are y + 1 = ± [latex]\frac{b}{e}[/latex]
= ± [latex]\frac{4}{\sqrt{3}}[/latex]
[latex]\sqrt{3}[/latex] y + [latex]\sqrt{3}[/latex] = ± 4
[latex]\sqrt{3}[/latex] y + [latex]\sqrt{3}[/latex] ± 4 = 0

iii) Given equation is x2 + 2y2 – 4x + 12y + 14 = 0
x2 – 4x + 2 (y2 + 6y) = 14
⇒ (x2 – 4x + 4) + 2(y2 + 6y + 9) = 4 + 18 – 14
⇒ (x – 2)2 + 2(y + 3)2 = 8
⇒ [latex]\frac{(x-2)^{2}}{8}[/latex] + [latex]\frac{(y+3)^{2}}{4}[/latex] = 1
⇒ [latex]\frac{(x-2)^{2}}{(2 \sqrt{2})^{2}}[/latex] + [latex]\frac{(y+3)^{2}}{2^{2}}[/latex] = 1
a = 2[latex]\sqrt{2}[/latex], b = 2, h = 2, k = -3
Length of major axis = 2a = 2(2 [latex]\sqrt{2}[/latex]) = 4 [latex]\sqrt{2}[/latex]
Length of minor axis = 2b = 2(2) = 4
Length of latus rectum
= [latex]\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}[/latex] = [latex]\frac{2(4)}{2 \sqrt{2}}[/latex] = 2[latex]\sqrt{2}[/latex]
Eccentricity = [latex]\sqrt{1-\frac{b^{2}}{a^{2}}}=\sqrt{1-\frac{4}{8}}=\frac{1}{\sqrt{2}}[/latex]
Centre = (h, k) = (2,-3)
Foci = (h ± ae, k) = (2 ± 2, -3)
= (4, -3), (0, -3)
Equations of the directrices are x – h = ± [latex]\frac{a}{e}[/latex]
x – 2 = [latex]\frac{2 \sqrt{2}}{\left(\frac{1}{\sqrt{2}}\right)}[/latex]
x – 2 = ± 4
i.e., x = 6, x = -2.

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 8.
Find the equations of tangent and normal to the ellipse 2x2 + 3y2 = 11 at the point whose ordinate is 1. [T.S. Mar. 16]
Solution:
Equation of the ellipse is 2x2 + 3y2 = 11
Given y = 1
2x2 + 3 = 11
⇒ 2x2 = 8
x2 = 4
x = ±2
Points on the ellipse are P (2, 1) and Q(-2, 1)
Case i) P (2, 1)
Equation of the tangent is 2x . 2 + 3y . 1 = 11
4x + 3y = 11
The normal is perpendicular to the tangent Equation of the normal at P can be taken as
3x – 4y = k
The normal passes through p (2, 1)
6 – 4 = k ⇒ k = 2
Equation of the normal at P is 3x – 4y = 2.
Case ii) Q (-2, 1)
Equation of the tangent at Q is
2x(-2) + 3y . 1 = 11
-4x + 3y =1 1
4x – 3y + 11 = 0
Equation of the normal can be taken as
3x + 4y = k
The normal passes through Q (-2, 1)
-6 + 4 = k ⇒ k = -2
Equation of the normal at Q is 3x + 4y = -2
or 3x + 4y + 2 = 0.

Question 9.
Find the eccentricity, co-ordinates of foci. Length of latus rectum and equations of directrices of the following ellipses.
i) 9x2 + 16y2 – 36x + 32y – 92 = 0,
ii) 3x2 + y2 – 6x – 2y – 5 = 0 [T.S. Mar. 15]
Solution:
i) Given ellipse is
9x2 + 16y2 – 36x + 32y – 92 = 0
9(x2 – 4x + 4) + 16 (y2 + 2y + 1)
= 92 + 36 + 16
9(x – 2)2 + 16(y + 1)2 = 144
comparing with [latex]\frac{(x-2)^{2}}{16}[/latex] + [latex]\frac{(y+1)^{2}}{9}[/latex] = 1,
we get
a2 = 16, b2 = 9 ⇒ a = 4, b = 3.
Inter 2nd Year Maths 2B Ellipse Important Questions 3
Equations of the directrices are x = h ± [latex]\frac{\mathrm{a}}{\mathrm{e}}[/latex]
x = 2 ± [latex]\frac{4 \times 4}{\sqrt{7}}[/latex]
[latex]\sqrt{7x}[/latex] = 2[latex]\sqrt{7}[/latex] ± 16

Inter 2nd Year Maths 2B Ellipse Important Questions

ii) 3x2 + y2 – 6x – 2y – 5 = 0
Solution:
3(x2 – 2x) + (y2 – 2y) = 5
⇒ 3(x2 – 2x + 1) + (y2 – 2y + 1) = 9
⇒ 3(x – 1)2 + (y – 1)2 = 9
comparing with ⇒ [latex]\frac{(x-1)^{2}}{3}[/latex] + [latex]\frac{(y-1)^{2}}{9}[/latex] = 1,
we get
a < b ⇒ Y – axis is the major axis
a2 = 3, b2 = 9
a = [latex]\sqrt{3}[/latex], b = 3, h = 1, k = 1
Length of major axis = 2b = 2(3) = 6
Length of minor axis = 2a = 2[latex]\sqrt{3}[/latex]
Inter 2nd Year Maths 2B Ellipse Important Questions 4

Question 10.
Find the equation of the tangent and normal to the ellipse 9x2 + 16y2 = 144 at the end of the latus rectum in the first quadrant. [A.P. Mar. 15, Mar. 07]
Solution:
Given ellipse is 9x2 + 16y2 = 144
Inter 2nd Year Maths 2B Ellipse Important Questions 5
Equation of the normal at P is
Inter 2nd Year Maths 2B Ellipse Important Questions 6

Question 11.
Show that the points of intersection of the perpendicular tangents to an ellipse lie on a circle. [A.P. Mar. 16]
Solution:
Let the equation of the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1
(a > b). Any tangent to it in the slope-intercept form is y = mx ± [latex]\sqrt{a^{2} m^{2}+b^{2}}[/latex] …………………. (1)
Let the perpendicular tangents intersect at P(x1, y1).
∴ P lies on (1) for some real m, i.e.,
y1 = mx1 ± [latex]\sqrt{a^{2} m^{2}+b^{2}}[/latex]
∴ (y1 – mx1)2 = a2m2 + b2.
or .
(x12 – a2) m2 – 2x1y1m + (y12 – b2) = 0 being a
quadratic equation in ‘m’ has two roots say m1 and m2 then m1, m2 are the slopes of tangents from P to the ellipse
∴ m1m2 = [latex]\left(\frac{y_{1}^{2}-b^{2}}{x_{1}^{2}-a^{2}}\right)[/latex]
∴ -1 = [latex]\left(\frac{y_{1}^{2}-b^{2}}{x_{1}^{2}-a^{2}}\right)[/latex]
[∵ The tangents are perpendicular to each
other so that m1m2 = -1]
i.e., x12 + y12 = a2 + b2,
If, however, one of the perpendicular tangents is vertical, then such pair of perpendicular tangents intersect at one of the points (± a, ± b) and any of these points satisfies x2 + y2 = a2 + b2.
∴ The point of intersection of perpendicular tangents to the ellipse S = O lies on the circle x2 + y2 = a2 + b2.

Question 12.
Find the eccentricity, co-ordinates of foci, Length of latus reEtum and equations of directrices of the following ellipses.
i) 9x2 + 16y2 – 36x + 32y – 92 = 0
ii) 3x2 + y2 – 6x – 2y – 5 = 0 [T.S. Mar. 15]
Solution:
Given ellipse is :
9x2 + 16y2 – 36x + 32y – 92 = 0
9(x2 -4x + 4) + 16 (y2 + 2y + 1)
= 92 + 36 + 16
9 (x – 2)2 + 16 (y + 1)22 = 144
comparing with [latex]\frac{(x-2)^{2}}{16}[/latex] + [latex]\frac{(y+1)^{2}}{9}[/latex] = 1,
we get
a2 = 16, b2 = 9 ⇒ a = 4, b = 3.
e = [latex]\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}=\sqrt{\frac{16-9}{16}}=\frac{\sqrt{7}}{4}[/latex]
Foci (h ± ae, k) = (2 ± 4 . [latex]\frac{\sqrt{7}}{4}[/latex], -1)
= (2 ± [latex]\sqrt{7}[/latex], -1)
Length of the latus rectum
= [latex]\frac{2 \cdot b^{2}}{a}=\frac{2.9}{4}=\frac{9}{2}[/latex]
Equations of the directrices are x = h ± [latex]\frac{a}{e}[/latex]
x = 2 ± [latex]\frac{4 \times 4}{\sqrt{7}}[/latex]
[latex]\sqrt{7x}[/latex] = 2[latex]\sqrt{7}[/latex] ± 16

Inter 2nd Year Maths 2B Ellipse Important Questions

ii) 3x2 + y2 – 6x – 2y – 5 = 0
Solution:
3(x2 – 2x) + (y2 – 2y) = 5
⇒ 3(x2 – 2x + 1) + (y2 – 2y + 1) = 9
⇒ 3(x – 1)2 + (y – 1)2 = 9 .
comparing with ⇒ [latex]\frac{(x-1)^{2}}{3}[/latex] + [latex]\frac{(y-1)^{2}}{9}[/latex] = 1
we get
a < b ⇒ Y – axis is the major axis
a2 = 3, b2 = 9 .
a = [latex]\sqrt{3}[/latex], b = 3, h = 1, k = 1
Length of major axis = 2b = 2(3) = 6
Length of minor axis = 2a = 2[latex]\sqrt{3}[/latex]
Length of latus rectum = [latex]\frac{2 a^{2}}{b}=\frac{2.3}{3}[/latex] = 2
Eccentricity = [latex]\sqrt{1-\frac{a^{2}}{b^{2}}}=\sqrt{1-\frac{3}{9}}=\sqrt{\frac{2}{3}}[/latex]
Centre = (h, k) = (1, 1)
Focus = (h, k ± be) = (1, 1 ± 3 [latex]\left.\sqrt{\frac{2}{3}}\right)[/latex])
= (1, 1 ± [latex]\sqrt{6}[/latex])
Equation of directrices are y – k = ± [latex]\frac{b}{e}[/latex]
y – 1 = ± [latex]\frac{3 \sqrt{3}}{\sqrt{2}}[/latex]
y = 1 ± [latex]\frac{3 \sqrt{3}}{\sqrt{2}}[/latex]

Question 13.
Find the equation of the ellipse referred to its major and minor axes as the co-ordinate axes x, y respectively with latus rectum of length 4 and the distance between foci 4[latex]\sqrt{2}[/latex].
Solution:
Let the equation of the ellipse is [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1
(a > b)
Length of the latus rectum = [latex]\frac{2 b^{2}}{a}[/latex] = 4
⇒ b2 = 2a.
Foci are S (ae, 0), S’ (-ae, 0)
Distance between the foci = 2ae = 4[latex]\sqrt{2}[/latex]
ae = 2[latex]\sqrt{2}[/latex]
b2 = a2 (1 – e2) = a2 – (ae)2
2a = a2 – 8 ⇒ a2 – 2a – 8 = 0
(a – 4) (a + 2) = 0
a = 4 or – 2
a > 0 ⇒ a = 4
b2 = 2a = 2 . 4 = 8
Equation of the ellipse is [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1
[latex]\frac{x^{2}}{16}[/latex] + [latex]\frac{y^{2}}{8}[/latex] = 1
x2 + 2y2 = 16.

Question 14.
If the length of the latus rectum is equal to half of its minor axis of an ellipse in the standard form, then find the eccentricity of the ellipse.
Solution:
Let [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 (a> b) be the ellipse in its standard form.
Length of latus rectum = [latex]\frac{1}{2}[/latex] (minor axis)
2 [latex]\frac{b^{2}}{a}[/latex] = [latex]\frac{1}{2}[/latex] (2b)
2 [latex]\frac{b^{2}}{a}[/latex] = b
a = 2b
a2 =4 b2, ⇒ a2 = 4a2 (1 – e2)
∴ 1 – e2 = [latex]\frac{1}{4}[/latex] ⇒ e2 = [latex]\frac{3}{4}[/latex]
⇒ e = [latex]\frac{\sqrt{3}}{2}[/latex].

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 15.
If θ1, θ2 are the eccentric angles of the extremeties of a focal chord (other that the vertices) of the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 (a > b) and e Its eccentricity. Then show that
i) e cos [latex]\frac{\left(\theta_{1}+\theta_{2}\right)}{2}[/latex] = cos [latex]\frac{\left(\theta_{1}-\theta_{2}\right)}{2}[/latex]
ii) [latex]\frac{e+1}{e-1}[/latex] = cot [latex]\left(\frac{\theta_{1}}{2}\right)[/latex] . cot [latex]\left(\frac{\theta_{2}}{2}\right)[/latex]
Solution:
Equation of the ellipse is [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1,
(a > b)
Inter 2nd Year Maths 2B Ellipse Important Questions 7
sin θ1 . cos θ2 – e sin θ1 = cos θ1 sin θ2 – e . sin θ2
sin θ1 . cos θ2 – cos θ1 sin θ2 = e sin θ1 – e sin θ2
sin (θ1 – θ2) = e (sin θ1 – sin θ2)
2 sin [latex]\frac{\left(\theta_{1}-\theta_{2}\right)}{2}[/latex] . cos [latex]\frac{\left(\theta_{1}-\theta_{2}\right)}{2}[/latex]
= e [2 cos [latex]\frac{\theta_{1}+\theta_{2}}{2}[/latex] . sin [latex]\frac{\theta_{1}-\theta_{2}}{2}[/latex]]
Inter 2nd Year Maths 2B Ellipse Important Questions 8

Question 16.
C is the centre1 AA’ and BB’ are major and minor axis of the ellipse.
[latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1. If PN is the ordinate of a point P on the ellipse then show that
[latex]\frac{(\mathrm{PN})^{2}}{\left(\mathrm{~A}^{\prime} \mathrm{N}\right)(\mathrm{AN})}[/latex] = [latex]\frac{(\mathrm{BC})^{2}}{(\mathrm{CA})^{2}}[/latex]
Solution:
Inter 2nd Year Maths 2B Ellipse Important Questions 9
Equation of the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1
P(a cos θ, b sin θ) any point on the ellipse.
PN = b sin θ; AN = a – a cos θ,
AN = a + a cos θ; BC = b, CA = a
(A’N). (AN) = (a + a cos θ) (a – a cos θ)
= a2 – a2cos2θ
= a2 (1 – cos θ)
= a2 sin2θ
[latex]\frac{(\mathrm{PN})^{2}}{\left(\mathrm{~A}^{\prime} N\right)(\mathrm{AN})}=\frac{\mathrm{b}^{2} \sin ^{2} \theta}{\mathrm{a}^{2} \sin ^{2} \theta}=\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}[/latex]
[latex]\frac{B C^{2}}{(C A)^{2}}=\frac{b^{2}}{a^{2}} \Rightarrow \frac{P^{2}}{\left(A^{1} N\right)(A N)}=\frac{(B C)^{2}}{(C A)^{2}}[/latex]

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 17.
S and Tare the foci of an ellipse and B is one end of the minor axis. If STB is an equilateral triangle, then find the eccentricity of the ellipse.
Solution:
Inter 2nd Year Maths 2B Ellipse Important Questions 10
Let [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 (a > b) be an ellipse whose foci are S and T, B is an end of the minor axis such that STB is equilateral, then SB = ST = TB. We have S(ae, 0).
T = (-ae, 0) and B(0, b)
Consider SB = ST ⇒ (SB)2 = (ST)2
⇒ (ae)2 + b2 = 4a2e2
∴ a2e2 + a2 (1 – e)2 = 4a2e2
[∵ b2 = a2 (1 – e2)]
e2 = [latex]\frac{1}{4}[/latex]
∴ Eccentricity of the ellipse is [latex]\frac{1}{2}[/latex].

Question 18.
Show that among the points on the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 (a > b), (-a, 0) is the farthest point and (a, 0) is the nearest point from the focus (ae, 0).
Solution:
Let P = (x, y) be any point on the ellipse so that – a ≤ x ≤ a and S = (ae, 0) be the focus.
Since (x, y) is on the ellipse,
y2 = [latex]\frac{b^{2}}{a^{2}}[/latex] (a2 – x2)
= (1 – e2)(a2 – x2) ………….. (1) [∵ b2 = a2(1 – e2)]
Then we know that
sp2 = (x – ae)2 + y2
= (x – ae)2 + (1 – e2)(a2 – x2)
= -2xae + a2 + e2x2
= [a – ex]2
∴ SP = [a – ex]
we have – a ≤ x ≤ a
⇒ -ae ≤ xe ≤ ae
⇒ -ae – a ≤ xe – a ≤ ae – a …………………. (2)
∴ ex – a < 0
∴ SP = a – ex …………………… (3)
From (2) and (3)
ae + a ≥ SP ≥ a – ae
⇒ a – ae ≤ SP ≤ ae + a
∴ Max SP = ae + a when P = (-a, 0)
and Min SP = a – ae when P = (a, 0)
Hence the nearest point is (a, 0) and the farthest one is (-a, 0).

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 19.
The orbit of the Earth is an ellipse with eccentricity [latex]\frac{1}{60}[/latex] with the Sun at one of its foci, the major axis being approximately 186 × 106 miles in length. Find the shortest and longest distance of the Earth from the Sun.
Solution:
We take the orbit of the Earth to be
[latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 (a > b).
Since the major axis is 186 × 106 miles,
2a = 186 × 106 miles
∴ a = 93 × 106 miles
If e be the eccentricity of the orbit, e = [latex]\frac{1}{60}[/latex]
We know, the longest and shortest distances of the Earth from the Sun are respectively
a + ae and a – ae (problem 7)
Here, the longest distance
= 93 × 106 × (1 + [latex]\frac{1}{60}[/latex])
= 9455 × 104 miles.
and the shortest distance
= 93 × 106 × (1 – [latex]\frac{1}{60}[/latex]) miles
= 9145 × 104 miles.

Question 20.
Find the equation of the tangent and normal to the ellipse 9x2 + 16y2 = 144 at the end of the latus rectum in the first quadrant. A.P. [Mar. 15, Mar. 07]
Solution:
Given ellipse is 9x2 + 16y2 = 144
Inter 2nd Year Maths 2B Ellipse Important Questions 11
Equation of the normal at P is
Inter 2nd Year Maths 2B Ellipse Important Questions 12

Question 21.
If a tangent to the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 (a > b) meets its major.axis and minor axis atM and N respectively, then prove that [latex]\frac{a^{2}}{(C M)^{2}}[/latex] + [latex]\frac{b^{2}}{(C N)^{2}}[/latex] = 1. Where C is the centre of the ellipse.
Solution:
Let P(θ) (a cos θ, b sin θ) is any point on the ellipse then Equation of the tangent at P (θ) is
Inter 2nd Year Maths 2B Ellipse Important Questions 13
a2 . [latex]\frac{\cos ^{2} \theta}{a^{2}}[/latex] + b2 . [latex]\frac{\sin ^{2} \theta}{b^{2}}[/latex]
= cos2 θ + sin2 θ = 1.

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 22.
Find the condition for the line
i) lx + my + n = 0 to be a tangent to the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1
ii) lx+ my n = 0 to be a normal to the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1.
Solution:
i) Equation of the ellipse is [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1
Equation .of the tangent at P(θ) is
[latex]\frac{x}{a}[/latex] cos θ + [latex]\frac{y}{b}[/latex] sin θ = 1 ……………………… (1)
Equation of the given line is
lx + my = -n …………………. (2)
(1), (2) represent the same line. Comparing the co-efficients
Inter 2nd Year Maths 2B Ellipse Important Questions 14
Comparing (1) and (2)
Inter 2nd Year Maths 2B Ellipse Important Questions 15
Inter 2nd Year Maths 2B Ellipse Important Questions 16

Question 23.
If the normal at one end of a latus rectum of the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 passes through one end of the minor axis, then show that e4 + e2 = 1 [e is the eccentricity of the ellipse]
Solution:
Let L be the one end of the latus rectum of
[latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1. Then the coordinates of
L = (ae, [latex]\frac{b^{2}}{a}[/latex])
Hence equation of the normal at L is
Inter 2nd Year Maths 2B Ellipse Important Questions 17
is a line passes through the one end
B’ = (0, -b)
or minor axis of [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 as shown in figure.
[latex]\frac{\mathrm{a}(0)}{\mathrm{e}}[/latex] – a(-b) = a2 – b2
ab = a22 – a2 (1 – e2)
ab = a2e2 ⇒ e2 = [latex]\frac{b}{a}[/latex] ⇒ e4 = [latex]\frac{b^{2}}{a^{2}}[/latex]
= [latex]\frac{a^{2}\left(1-e^{2}\right)}{a^{2}}[/latex] = 1 – e2 ⇒ e4 + e2 = 1.

Question 24.
If PN is the ordinate of a point P on the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 and the tangent at P meets the X – axis at T then show that (CN) (CT) = a2 where C is the centre of the ellipse.
Solution:
Let P(θ) = (acosθ, bsinθ) be a point on the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1. Then the equation of the tangent at P(θ) is [latex]\frac{x \cos \theta}{a}[/latex] + [latex]\frac{y \sin \theta}{b}[/latex] = 1 or [latex]\frac{x}{\frac{a}{\cos \theta}}+\frac{y}{\frac{b}{\sin \theta}}=1[/latex] meets the X – axis at T
Inter 2nd Year Maths 2B Ellipse Important Questions 18
x – intercept (CT) = [latex]\frac{a}{\cos \theta}[/latex] and the ordinate of P is PN = bsinθ
then its absicca CN = a cos θ. (see Fig.)
∴ (CN) . (CT) =, (a cos θ) ([latex]\frac{a}{\cos \theta}[/latex]) = a2.

Inter 2nd Year Maths 2B Ellipse Important Questions

Question 25.
Show that the points of intersection of the perpendicular tangents to an ellipse lie on a circle. [A.P. Mar. 16]
Solution:
Let the equation of the ellipse [latex]\frac{x^{2}}{a^{2}}[/latex] + [latex]\frac{y^{2}}{b^{2}}[/latex] = 1 (a > b). Any tangent to it in the slope-intercept
form is y = mx ± [latex]\sqrt{a^{2} m^{2}+b^{2}}[/latex] …………………. (1)
Let the perpendicular tangents interested at
P(x1, y1).
∴ p lies on (1) for some real m, i.e.,
y1 = mx1 ± [latex]\sqrt{a^{2} m^{2}+b^{2}}[/latex]
∴ (y1 – mx1)2 = a2m2 + b2.
or
(x12 – a2) m2 – 2x1y1m + (y12 – b2) = 0 is a quadratic equation in ‘m’, has two roots say m1 and m2 then m1, m2 are the slopes of tangents from P to the ellipse
∴ m1m2 = [latex]\left(\frac{y_{1}^{2}-b^{2}}{x_{1}^{2}-a^{2}}\right)[/latex]
∴ – 1 = [latex]\left(\frac{y_{1}^{2}-b^{2}}{x_{1}^{2}-a^{2}}\right)[/latex]
[∵ The tangents are perpendicular to each other so that m1 m2 = -1]
i.e., [latex]x_{1}^{2}[/latex] + [latex]y_{1}^{2}[/latex] = a2 + b2.
If, however, one of the perpendicular tangents is vertical, then such a pair of perpendicular tangents intersect at one of the points (a, ± b) and any of these points satisfy x2 + y2 = a2 + b2.
∴ The point of intersection of perpendicular tangents to the ellipse S = 0 lies on the circle x2 + y2 = a2+ b2.

Inter 2nd Year Maths 2B Parabola Important Questions

Students get through Maths 2B Important Questions Inter 2nd Year Maths 2B Parabola Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2B Parabola Important Questions

Question 1.
Find the equation of the parabola whose focus is S (1, -7) and vertex is A(1, -2). [T.S. Mar. 15]
Solution:
Let S = (1, -7), A(1, -2)
h = 1, k = -2, a = -2 + 7 = 5
The Axis of the parabola is parallel to the y-axis
The equation of the parabola is
(x – h)2 = – 4a (y – k)
(x – 1)2 = – 20(y + 2)
x2 – 2x + 1, = – 20y – 40
⇒ x2 – 2x + 20y + 41 – 0.

Inter 2nd Year Maths 2B Parabola Important Questions

Question 2.
If the normal at the point t1 on the parabola y2 =, 4ax meets it again at point t2 then prove that t1t2 + t12 + 2 = 0. [May 07]
Solution:
Equation of normal is
y – y1 = [latex]\frac{-y_{1}}{2 a}[/latex] (x – x1)
y – 2at1 = [latex]\frac{-2 a t_{1}}{2 a}[/latex] (x – at12) ……………… (i)
Equation of the line (i) again meets parabola at (at22, 2at1)
∴ 2at2 – 2at1 = t1 (at22 – at12)
[latex]-\frac{2}{t_{1}}[/latex] = t1 + t2 ⇒ -2 = t12 + t1t2
⇒ t12 + t1t2 + 2 = 0

Question 3.
Find the coordinates of the vertex and focus, and the equations of the directrix and axes of the y – x + 4y + 5 = 0. [Mar 05]
Solution:
y2 – x + 4y + 5 = 0 ⇒ (y – (-2))2 = (x – 1), comparing with (y – k)2 = 4a(x – h),we get (h, k) = (1, -2) and a = [latex]\frac{1}{4}[/latex], coordinates of the vertex (h, k) = (1 ,-2)
coordinates of the focus (h + a, k) = ([latex]\frac{5}{4}[/latex], -2)
Equation of the directrix x – h + a = 0
i.e., 4x – 3 = 0
Equation of the axis y – k = 0.
i.e., y + 2 = 0

Inter 2nd Year Maths 2B Parabola Important Questions

Question 4.
Find the coordinates of the points on the parabola y2 = 2x whose focal distance is [latex]\frac{5}{2}[/latex]. [A.P. Mar. 15, Mar. 13]
Solution:
Let P(x1, y1) be a point on the parabola
y2 = 2x whose focal distance is [latex]\frac{5}{2}[/latex] then
y12 = 2x1 and x1 + a = [latex]\frac{5}{2}[/latex]
⇒ x1 + [latex]\frac{1}{2}[/latex] = [latex]\frac{5}{2}[/latex] ⇒ x1 = 2
∴ y12 = 2(2) = 4 ⇒ y1 = ±2
∴ The required points are (2, 2) and (2, -2)

Question 5.
Find the value of k if the line 2y = 5x + k is a tangent to the parabola y2 = 6x. [T.S. Mar. 16]
Solution:
Given line is 2y = 5x + k
⇒ y = ([latex]\frac{5}{2}[/latex])x + ([latex]\frac{k}{2}[/latex])
Comparing y = ([latex]\frac{5}{2}[/latex])x + ([latex]\frac{k}{2}[/latex]) with y = mx + c
We get m = [latex]\frac{5}{2}[/latex], c = [latex]\frac{k}{2}[/latex]
y = ([latex]\frac{5}{2}[/latex])x + [latex]\frac{k}{2}[/latex] is a tangent to y2 = 6x
c = [latex]\frac{a}{m}[/latex]
⇒ [latex]\frac{k}{2}=\frac{\left(\frac{3}{2}\right)}{\left(\frac{5}{2}\right)}[/latex] ⇒ k = [latex]\frac{6}{5}[/latex]

Question 6.
Show that the equations of common tangents to the circle x2 + y2 = 2a2 and the parabola y2 = 8ax are y = ± (x + 2a). [Mar. 06]
Solution:
The equation of tangent to parabola
y2 = 8ax is y = mx + [latex]\frac{2a}{m}[/latex]
m2x – my + 2a = 0 ……………….. (1)
If (i) touches circle x2 + y2 = 2a2, then the length of perpendicular from its centre (0, 0) to (i) must be equal to the radius a[latex]\sqrt{2}[/latex] of the circle.
[latex]\left|\frac{2 a}{\sqrt{m^{2}+m^{4}}}\right|=a \sqrt{2}[/latex]
or 4 = 2 (m4 + m2)
m4 + m2 – 2 = 0
(m2 + 2) (m2 – 1) = 0 or m = ±1
Required tangents are
y = (1) x + [latex]\frac{2 a}{(1)}[/latex], y = (-1) x + [latex]\frac{2 a}{(-1)}[/latex]
y = ± (x + 2a)

Inter 2nd Year Maths 2B Parabola Important Questions

Question 7.
Find the co-ordinates of the point on the parabola y2 = 8x whose focal distance is 10. [T.S. Mar. 17] [A.P. Mar. 16; Mar. 14, 11]
Solution:
Equation of the parabola is
y2 = 8x
4a = 8 ⇒ a – 2
Inter 2nd Year Maths 2B Parabola Important Questions 1
Co-ordinates of the focus S are (2, 0) Suppose P(x, y) is the point on the parabola.
Given SP = 10 ⇒ SP2 = 100
(x – 2)2 + y2 = 100
But y2 = 8x
⇒ (x – 2)2 + 8x = 100
⇒ x2 – 4x + 4 + 8x – 100 = 0
⇒ x2 + 4x – 96 = 0 ⇒ (x + 12) (x – 8) = 0
x + 12 = 0 or x – 8 = 0
x = -12, or 8
Case (i) x = 8
y2 = 8.x = 8.8 = 64
y = ±8
Co-ordinates of the required points are (8, 8) and (8, -8)
Case (ii) x = -12
y2 = 8(-12) = -96 < 0
y is not real.

Question 8.
If ([latex]\frac{1}{2}[/latex], 2) is one extermity of a focal chord of the parabola y2 = 8x. Find the co-ordinates of the other extremity. [May 06]
Solution:
A = ([latex]\frac{1}{2}[/latex], 2); S = (2, 0)
B = (x1, y1) ⇒ ([latex]\frac{y_{1}^{2}}{8}[/latex], y1)
ASB is a focal chord.
∴ Slopes of SA and BS are same.
Inter 2nd Year Maths 2B Parabola Important Questions 2
or 4y12 + 24y1 – 64 = 0
⇒ y12 + 6y1 – 16 = 0
⇒ (y1 + 8) (y, – 2) = 0
y1 = 2, 8
x1 = [latex]\frac{1}{2}[/latex], 8; So (8, -8) other extremity.

Inter 2nd Year Maths 2B Parabola Important Questions

Question 9.
Show that the common tangent to the parabola y2 = 4ax and x2 = 4by is xa1/3 + yb1/3 + a2/3b2/3 = 0 [T.S. Mar. 17] [A.P. Mar. 16]
Solution:
The equations of the parabolas are
y2 = 4ax ………………. (1)
and x2 = 4by ……………… (2)
Equation of any tangent to (1) is of the form
y = mx + [latex]\frac{a}{m}[/latex] …………….. (3)
If the line (3) is a tangent to (2) also, we must get only one point of intersection of (2) and (3).
Substituting the value of y from (3) in (2), we get x2 = 4b (mx + [latex]\frac{a}{m}[/latex]) is 3x2 – 4bm2x – 4ab = 0 should have equal roots Therefore its discriminent must be zero. Hence
16b2m4 – 4m (-4ab) = 0
16b(bm4 + am) = 0
m(bm3 + a) = 0 But m ≠ 0
∴ m = – a1/3/b1/3 substituting in (3) the equation of the common tangent becomes
y = [latex]-\left(\frac{a}{b}\right)^{1 / 3} x+\frac{a}{\left(-\frac{a}{b}\right)^{1 / 3}}[/latex] or
a1/3x + b1/3y + a2/3b2/3 = 0 .

Question 10.
Prove that the area of the triangle formed by the .tangents at (x1, y1), (x2, y2) and (x3, y3) to the parabola y2 = 4ax (a > 0) is [latex]\frac{1}{16a}[/latex]|(y1 – y2) (y2 – y3) (y3 – y1)| sq. units. [T.S. Mar. 15]
Solution:
Let D(x1, y1) = (at12, 2at1),
E(x2, y2) = (at22, 2at2),
and F(x3, y3) = (at32, 2at3), be three points on the parabola
y2 = 4ax (a > 0).
The equation of the tangents at D, E and F are
t1y = x + at12 ……………… (1)
t2y = x + at22 ………………. (2)
t3y = x.+ at32 ………………. (3)
(1) – (2) ⇒ (t1 – t2) y = a(t1 – t2) (t1 + t2)
⇒ y = a(t1 + t2) substituting in (1)
we get x = at1t2.
∴ The point of intersection of the tangents at D and E is say P(at1t2, a(t1 + t2))
Similarly the points of intersection of tangent at E, F and at F, D are Q(at2t3, a(t2 + t3) and R(at3t1 a(t3 + t1)) respectively
Area of ∆PQR
Inter 2nd Year Maths 2B Parabola Important Questions 3
[latex]\frac{1}{16a}[/latex] |2a(t1 – t2) 2a(t2 – t3) 2a(t3 – t1)|
[latex]\frac{1}{16a}[/latex]|(y1 – y2) (y2 – y3) (y3 – y1)| sq. units.

Question 11.
Prove that the two parabolas y2 = 4ax and x2 = 4by intersect (other than the origin) at an angle of Tan-1 [latex]\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right][/latex] [Mar. 14]
Solution:
Without loss of generality we assume a > 0 and b > 0.
Let P(x, y) be the point of intersection of the parabolas other than the origin. Then
y4 = 16a2x2
= 16a2(4by)
= 64a2by
∴ y[y3 – 64a2b] = 0
=> y3 – 64a2b = 0
=> y = (64a2b)1/3 [∵ y > 0]
= 4a2/3b1/3
Inter 2nd Year Maths 2B Parabola Important Questions 4
Also from y2 = 4ax, x = [latex]\frac{16 a^{4 / 3} b^{2 / 3}}{4 a}[/latex]
= 4a1/3b2/3
∴ P = (4a1/3b2/3, 4a2/3b1/3)
Differentiating both sides of y2 4ax w.r.t ‘x’, we get
[latex]\frac{d y}{d x}=\frac{2 a}{y}[/latex]
∴ [latex]\left[\frac{\mathrm{dy}}{\cdot \mathrm{dx}}\right]_{\mathrm{p}}=\frac{2 \mathrm{a}}{4 \mathrm{a}^{2 / 3} \mathrm{~b}^{1 / 3}}=\frac{1}{2}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{1 / 3}[/latex]
If m1 be the slope of the tangent at P to y2 = 4ax, then
m1 = [latex]\frac{1}{2}\left(\frac{a}{b}\right)^{1 / 3}[/latex]
Similarly, we get m2 = [latex]2\left(\frac{a}{b}\right)^{1 / 3}[/latex] where m2 is the slope of the tangent at P to x2 = 4by.
If θ is the acute angle between the tangents to the curves at P, then
tan θ = [latex]\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|=\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}[/latex]
so that θ = [latex]\tan ^{-1}\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right][/latex]

Inter 2nd Year Maths 2B Parabola Important Questions

Question 12.
Find the coordinates of the vertex and focus, and the equations of the directrix and axes of the following parabolas.
(i) y2 = 16x
(ii) x2 = -4y
(iii) 3x2 – 9x + 5y – 2 = 0
(iv) y2 – x + 4y + 5 = 0 [Mar. 05]
Solution:
i) y2 = 16x, comparing with y2 = 4ax,
we get 4a = 16 ⇒ a = 4
The coordinates of the vertex = (0, 0)
The coordinates of the focus = (a, 0) = (4, 0)
Equation of the directrix: x + a = i.e., x + 4 = 0
Axis of the parabola y = 0

ii) x2 = -4y, comparing with x2 = -4ay,
we get 4a = 4 ⇒ a = 1
The coordinates of the vertex = (0, 0
The coordinates of the focus = (0, -a) = (0, 1)
The equation of the directrix y – a = 0
i.e., y – 1 = 0 .
Equation of the axis x = 0

iii) 3x2 – 9x + 5y – 2 = 0
3(x2 – 3x) = 2 – 5y
⇒ 3(x2 – 2x([latex]\frac{3}{2}[/latex]) + [latex]\frac{9}{4}[/latex]) = 2 – 5y + [latex]\frac{27}{4}[/latex]
(x – [latex]\frac{3}{2}[/latex])2 = -[latex]\frac{5}{3}[/latex] (y – [latex]\frac{7}{4}[/latex]),
Comparing with (x – h)2 = -4a (y – k) we get
a = [latex]\frac{5}{12}[/latex], h = [latex]\frac{3}{2}[/latex], k = [latex]\frac{7}{4}[/latex]
∴ Coordinates of the vertex = (h, k)
= ([latex]\frac{3}{2}[/latex], [latex]\frac{7}{4 }[/latex])
Coordinates of the focus = (h, k – a)
= ([latex]\frac{3}{2}[/latex], [latex]\frac{7}{4}[/latex] – [latex]\frac{5}{12}[/latex]) = ([latex]\frac{3}{2}[/latex], [latex]\frac{4}{3}[/latex])
Equation of the directrix is y – k – a = 0
i.e., 6y – 13 = 0
Equation of the axis is x – h = 0
i.e., 2x – 3 = 0

iv) y2 – x + 4y + 5 = 0 ⇒ (y- (-2))2 = (x – 1),
comparing with (y – k)2 = 4a(x – h),we get
(h, k) = (1, -2) and a = [latex]\frac{1}{4}[/latex], coordinates of the vertex (h, k) = (1 ,-2)
coordinates of the focus
(h + a, k) = ([latex]\frac{5}{4}[/latex], -2)
Equation of the directrix x – h + a = 0
i.e., 4x – 3 = 0
Equation of the axis y – k = 0.
i.e., y + 2 = 0

Inter 2nd Year Maths 2B Parabola Important Questions

Question 13.
Find the equation of the parabola whose vertex is (3, -2) and focus is (3, 1).
Solution:
The abcissae of the vertex and focus are equal to 3. Hence the axis of the parabola is x = 3, a line parallel to y-axis, focus is above the vertex.
a = distance between focus and vertex = 3.
∴ Equation of the parabola
(x – 3)2 = 4(3) (y + 2)
i.e., (x – 3)2 = 12(y + 2).

Question 14.
Find the coordinates of the points on the parabola y2 = 2x whose focal distance is [latex]\frac{5}{2}[/latex]. [A.P. Mar. 15, Mar. 13]
Solution:
Let P(x1, y1) be a point on the parabola
y2 = 2x whose focal distance is [latex]\frac{5}{2}[/latex] then
y12 = 2x1 and x1 + a = [latex]\frac{5}{2}[/latex]
⇒ x1 + [latex]\frac{1}{2}[/latex] = [latex]\frac{5}{2}[/latex] ⇒ x1 = 2
∴ y12 = 2(2) = 4 ⇒ y1 = ±2
∴ The required points are (2, 2) and (2, -2)

Question 15.
Find the equation of the parabola passing through the points (-1, 2), (1, -1) and (2, 1) and having its axis parallel to the X-axis.
Solution:
Since the axis is parallel to x-axis the equation of the parabola is in the form of
x = -ly2 + my + n. .
Since the parabola passes through (-1, 2), we have
-1 = l( 2)2 + m(2) + n
⇒ 4l + 2m + n = – 1 ……………………. (1)
Similarly, since the parabola passes through (1,-1) and (2, 1) we have
l – m + n = 1 ……………… (2)
l + m + n = 2 ……………… (3)
Solving (1), (2) and (3)
we get l = -[latex]\frac{7}{6}[/latex], m = [latex]\frac{1}{2}[/latex] and n = [latex]\frac{8}{3}[/latex].
Hence the equation of the parabola is
x = -[latex]\frac{7}{6}[/latex] y2 + [latex]\frac{1}{2}[/latex] y + [latex]\frac{8}{3}[/latex] (or)
7y2 – 3y + 6x- 16 = 0.

Inter 2nd Year Maths 2B Parabola Important Questions

Question 16.
A double ordinate of the curve y2 = 4ax is of length 8a. Prove that the line from the vertex to its ends are at right angles.
Solution:
Let P = (at2, 2at) and P’ = (at2, -2at) be the ends of double ordinate PP’. Then
8a = PP’ = [latex]\sqrt{0+(4 a t)^{2}}[/latex] = 4at ⇒ t = 2.
∴ P = (4a, 4a), P’= (4a, -4a) .
Slope of [latex]\overline{\mathrm{AP}}[/latex] × slope of [latex]\overline{\mathrm{AP}^{\prime}}[/latex]
= ([latex]\frac{4a}{4a}[/latex])(-[latex]\frac{4a}{4a}[/latex]) = -1
∴ ∠PAP’ = [latex]\frac{\pi}{2}[/latex]

Question 17.
i) If the coordinates of the ends of a focal chord of the parabola y2 = 4ax are (x1, y1) and (x2, y2), then prove that x1x2 = a2, y1y2 = -4a2.
ii) For a focal chord PQ of the parabola y2 = 4ax, if SP = l and SQ = l’ then prove that [latex]\frac{1}{l}[/latex] + [latex]\frac{1}{l}[/latex] = [latex]\frac{1}{a}[/latex].
Solution:
i) Let P(x1, y1) = (at12, 2at1) and Q(x2, y2) = (at22, 2at1) be two end points of a focal chord.
P, S, Q are collinear
Slope of [latex]\overline{\mathrm{PS}}[/latex] = Slope of [latex]\overline{\mathrm{QS}}[/latex]
[latex]\frac{2 a t_{1}}{a t_{1}^{2}-a}=\frac{2 a t_{2}}{a t_{2}^{2}-a}[/latex]
t1t22 – t1 = t2t12 – t2
t1t2 (t2 – t1) + (t2 – t1) = 0
1 + t1t2 = 0 ⇒ t1t2 = -1 ………………… (1)
From (1) x1x2 = at12 at22 = a2(t2t1)2 = a2
y1y2 = 2at12at2 = 4a2(t2 t1) = -4a2

ii) Let P(at12, 2at1) and Q(at22, 2at1) be the extremities of a focal chord of the parabola, then t1t2 = -1 (from (1))
Inter 2nd Year Maths 2B Parabola Important Questions 5

Question 18.
If Q is the foot of the perpendicular from a point P on the parabola y2 = 8(x – 3) to its directrix. S is the focus of the parabola and if SPQ is an equilateral triangle then find the length of side of the triangle.
Solution:
Given parabola y2 = 8(x – 3) then
its vertex A = (3, 0) and focus = (5, 0)
[4a = 8 ⇒ a = 2] since PQS is an equilateral triangle
Inter 2nd Year Maths 2B Parabola Important Questions 6
Hence length of each side of triangle is ‘8’.

Inter 2nd Year Maths 2B Parabola Important Questions

Question 19.
The cable of a uniformely loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 72 mt. long is supported by vertical wires attached to the cable, the longest being 30 mts. and the shortest being 6 mts. Find the length of the supporting wire attached to the road-way 18 mts. from the middle.
Inter 2nd Year Maths 2B Parabola Important Questions 7
Solution:
Let AOB be the cable [0 is its lowest point and A, B are the highest points]. Let PRQ be the bridge suspended with PR = RQ = 36 mts. (see above Fig.).

PA = QB = 30 mts (longest vertical sup-porting wires)

OR = 6 mts (shortest vertical supporting wire) [the lowest point of the cable is up¬right the mid-point R of the bridge]

Therefore, PR = RQ = 36 mts. We take the origin of coordinates at 0, X-axis along the tangent at O to the cable and the Y-axis along [latex]\overleftrightarrow{\mathrm{RO}}[/latex]. The equation of the cable would, therefore, be x2 = 4ay for some a > 0. We get B = (36, 24) and 362 = 4a × 24.
Therefore, 4a = [latex]\frac{36 \times 36}{24}[/latex] = 54 mts.
If RS = 18 mts. and SC is the vertical through S meeting the cable at C and the X-axis at D, then SC is the length of the supporting wire required. If SC = l mts, then
DC = (l – 6) mts. As such C = (18, l – 6).
Since C is on the cable, 182 = 4a (l – 6)
⇒ l – 6 = [latex]\frac{18^{2}}{4 a}[/latex] = [latex]\frac{18 \times 18}{54}[/latex] = 6
⇒ l = 12

Question 20.
Find the condition for the straight line lx + my + n = 0 to be a tangent to the parabola y2 = 4ax and find the co-ordinates of the point of contact.
Solution:
Let the line lx + my + n = 0 be a tangent to the parabola y2 = 4ax at (at2, 2at). Then the equation of the tangent at P(t) is x – yt + at2 = 0 then it represents the given line
lx + my + n = 0, then
Inter 2nd Year Maths 2B Parabola Important Questions 8

Inter 2nd Year Maths 2B Parabola Important Questions

Question 21.
Show that the straight line 7x + 6y = 13 is a tangent to the parabola y2 – 7x – 8y + 14 = 0 and find the point of contact.
Solution:
Equation of the given line is 7x + 6y = 13, equation of the given parabola is y2 – 7x – 8y + 14 = 0.
By eliminating x, we get the ordinates of the points of intersection of line and parabola adding the equations y2 – 2y + 1 = 0.
i.e., (y – 1 )2 = 0 ⇒ y = 1, 1.
∴ The given line is tangent to the given parabola.
If y = 1 then x = 1 hence the point of contact is (1, 1).

Question 22.
Prove that the normal chord at the point other than origin whose ordinate is equal to its abscissa subtends a right angle at the focus.
Solution:
Let the equation of the parabola be
y2 = 4ax and P(at2, 2at) be any point …………………. (1)
On the parabola for which the abscissa is equal to the ordinate.
i.e., at2 = 2at ⇒ t = 0
or t = 2. But t ≠ 0. Hence the point (4a, 4a) at which the normal is
y + 2x = 2a(2) + a(2)3 (or)
y = (12a – 2x) ………………….. (2)
Substituting the value of
y = 12a – 2x in (1) we get
(12a – 2x)2 = 4ax (or)
x2 – 13ax + 36a2 = (x – 4a) (x – 9a) = 0
⇒ x = 4a, 9a
corresponding values of y are 4a and -6a. Hence the other points of intersection of that normal at P(4a, 4a) to the given parabola is Q(9a, -6a), we have S(a, 0).
Slope of the [latex]\overline{\mathrm{SP}}[/latex] = m1 = [latex]\frac{4a-0}{4a-a}[/latex] = [latex]\frac{4}{3}[/latex],
Slope of the [latex]\overline{\mathrm{SQ}}[/latex] = m2 = [latex]\frac{-6a-0}{9a-a}[/latex] = [latex]\frac{3}{4}[/latex]
clearly m1m2 = -1, so that [latex]\overline{\mathrm{SP}}[/latex] ⊥ [latex]\overline{\mathrm{SQ}}[/latex]

Inter 2nd Year Maths 2B Parabola Important Questions

Question 23.
From an external point P, tangent are drawn to the parabola y2 = 4ax and these tangent make angles θ1, θ2 with its axis, such that tan θ1 + tan θ2 is constant b. then show that P lies on the line y = bx.
Solution:
Let the coordinates of P be (x1, y1) and the equation of the parabola y2 = 4ax. Any tangent to .the parabola is y = mx + [latex]\frac{a}{m}[/latex], if this passes through (x1, y1) then
y1 = mx, + [latex]\frac{a}{m}[/latex]
i.e., m2x1 – my1 + a = 0 ………………… (1)
Let the roots of (1) be m1, m21.
Then m1 + m2 = [latex]\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}[/latex]
⇒ tan θ1 + tan θ2 = [latex]\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}[/latex]
[∵ The tangents make angles θ1, θ2 with its axis (x – axis) then their slopes m1 = tan θ1 and m2 = tan θ2].
∴ b = [latex]\frac{\mathrm{y}_{1}}{\mathrm{x}_{1}}[/latex] ⇒ y1 = bx1
∴ P(x1, y1) lies on the line y = bx.

Question 24.
Show that the common tangent to the parabola y2 = 4ax and x2 = 4by is xa1/3 + yb1/3 + a2/3b2/3 = 0. [A.P. Mar. 16]
Solution:
The equations of the parabolas are
y2 = 4ax ………………. (1)
and x2 = 4by …………………. (2)
Equation of any tangent to (1) is of the form
y = mx + [latex]\frac{a}{m}[/latex]
If the line (3) is a tangent to'(2) also, we must get only one point of intersection of (2) and (3).
Substituting the value of y from (3) in (2),
we get x2 = 4b (mx + [latex]\frac{a}{m}[/latex]) is mx2 – 4bm2x – 4ab = 0 should have equal roots therefore its discriminent must be zero. Hence
16b2m4 – 4m (-4ab) = 0
16b(bm4 + am) = 0
m(bm3 + a) = 0 But m ≠ 0
∴ m = – a1/3/b1/3 substituting in (3) the equation of the common tangent becomes
y = [latex]-\left(\frac{a}{b}\right)^{1 / 3} x+\frac{a}{\left(-\frac{a}{b}\right)^{1 / 3}}[/latex] (or)
∴ a1/3 x + b1/3y + a2/3b2/3 = 0

Inter 2nd Year Maths 2B Parabola Important Questions

Question 25.
Prove that the area of the triangle formed ‘ by the tangents at (x1, y1), (x2, y2) and (x3, y3) to the parabola y2 = 4ax (a > 0) is [latex]\frac{1}{16a}[/latex]|(y1 – y2) (y2 – y3) (y3 – y1)| sq. units. [T.S. Mar. 15]
Solution:
Let D(x1, y1) = (at12, 2at1)
E(x2, y2) = (at32, 2at2)
and F(x3, y3) = (at23, 2at3)
be three points on the parabola
y2 = 4ax (a > 0).
The equation of the tangents at D, E and F are
t1y = x + at12 ………………. (1)
t2y = x + at22 ………………. (2)
t3y = x + at32 ………………. (3)
(1) – (2) ⇒ (t1 – t2) y = a(t1 – t2) (t1 + t2)
⇒ y = a(t1 + t2) substituting in (1)
we get x = at1t2
∴ The point of intersection of the tangents at D and E is say P(at1t2, a(t1 + t2))
Similarly the points of intersection of tangent at E, F and at F, D are Q(at2t3, a(t2 + t3) and R(at3t1, a(t3 + t1)) respectively
Area of ∆PQR
Inter 2nd Year Maths 2B Parabola Important Questions 9
Inter 2nd Year Maths 2B Parabola Important Questions 10

Question 26.
Prove that the two parabolas y2 = 4ax and x2 = 4by intersect (other than the origin) at an angle of Tan-1 [latex]\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right][/latex] [Mar. 14]
Solution:
Without loss of generality we assume a > 0 and b > 0.
Let P(x, y) be the point of intersection of the parabolas other than the origin. Then
y4 = 16a2x2
= 16a2(4by)
= 64a2by
∴ y[y3 – 64a2b] = 0
⇒ y3 – 64a2b = 0
⇒ y = (64a2b)1/3 [∵ y > 0]
= 4a2/3b1/3
Inter 2nd Year Maths 2B Parabola Important Questions 4
Also from y2 = 4ax, x = [latex]\frac{16 a^{4 / 3} b^{2 / 3}}{4 a}[/latex]
= 4a1/3b2/3
∴ P = (4a1/3b2/3, 4a2/3b1/3)
Differentiating both sides of y2 4ax w.r.t ‘x’, we get
[latex]\frac{d y}{d x}=\frac{2 a}{y}[/latex]
∴ [latex]\left[\frac{\mathrm{dy}}{\cdot \mathrm{dx}}\right]_{\mathrm{p}}=\frac{2 \mathrm{a}}{4 \mathrm{a}^{2 / 3} \mathrm{~b}^{1 / 3}}=\frac{1}{2}\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{1 / 3}[/latex]
If m1 be the slope of the tangent at P to y2 = 4ax, then
m1 = [latex]\frac{1}{2}\left(\frac{a}{b}\right)^{1 / 3}[/latex]
Similarly, we get m2 = [latex]2\left(\frac{a}{b}\right)^{1 / 3}[/latex] where m2 is the slope of the tangent at P to x2 = 4by.
If θ is the acute angle between the tangents to the curves at P, then
tan θ = [latex]\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|=\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}[/latex]
so that θ = [latex]\tan ^{-1}\left[\frac{3 a^{1 / 3} b^{1 / 3}}{2\left(a^{2 / 3}+b^{2 / 3}\right)}\right][/latex]

Inter 2nd Year Maths 2B Parabola Important Questions

Question 27.
Prove that the orthocenter of the triangle formed by any three tangents to a parabola lies on the directrix of the parabola.
Solution:
Let y2 = 4ax be the parabola and
A = (at12, 2at1),
B = (at22, 2at2),
C = (at32, 2at3) be any three points on it.
Now we consider the triangle PQR formed by the tangents to the parabola at A, B, C
where P = (at1t2, a(t1 + t2)),
Q = (at2t3, a(t2 + t3)) and R = (at3t1, a(t3 + t1)).
Equation of [latex]\overleftrightarrow{\mathrm{QR}}[/latex] (i.e., the tangent at C) is x – t3 y + at32 = 0.
Therefore, the attitude through P of triangle PQR is
t3x + y = at1t2t3 + a(t1 + t2) ………………….. (1)
Similarly, the attitude through Q is
t1x + y = at1t2t3 + a(t2 + t3) ………………….. (2)
Solving (1) and (2), we get (t3 – t1)
x’ = a(t1 – t3) i.e., x = – a.
Therefore, the orthocenter of the triangle PQR, with abscissa as -a, lies on the directrix of the parabola.