Practicing the Intermediate 1st Year Maths 1B Textbook Solutions Inter 1st Year Maths 1B Differentiation Solutions Exercise 9(c) will help students to clear their doubts quickly.

Intermediate 1st Year Maths 1B Differentiation Solutions Exercise 9(c)

I.

Question 1.
Find the derivatives of the following functions.
i) sin-1 (3x – 4x³)
Solution:
Put x = sin θ
y = sin-1 (3 sin θ – 4 sin³ θ)
= sin-1 (sin 3 θ) = 3 θ = 3 sin-1 x.
\(\frac{dy}{dx}\) = \(\frac{3}{\sqrt{1-x^{2}}}\)

ii) cos-1 (4X3 – 3x)
Solution:
Put x = cos θ
y = cos-1 (4 cos³ θ – 3 cos θ)
= cos-1 (cos 3θ) = 3θ = 3 cos-1 x
\(\frac{dy}{dx}\) = \(\frac{3}{\sqrt{1-x^{2}}}\)

iii) sin-1 \(\frac{3}{{1-x^{2}}}\)
Solution:
Put x tan θ ⇒ y
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 1

iv) tan-1 \(\frac{a-x}{1+ax}\)
Solution:
Put a tan α, x = tan θ
y = tan-1 \(\left(\frac{\tan \alpha-\tan \theta}{1+\tan \alpha \tan \theta}\right)\)
= tan-1 (tan (α – θ)) = α – θ
= tan-1 a – tan-1 x;
\(\frac{dy}{dx}\) = 0 – \(\frac{1}{1+x^{2}}\) = – \(\frac{1}{1+x^{2}}\)

v) tan-1 \(\sqrt{\frac{1-\cos x}{1+\cos x}}\)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 2
Differentiating w.r.to x; \(\frac{dy}{dx}\) = \(\frac{1}{2}\)

vi) sin [cos (x²)]
Solution:
\(\frac{dy}{dx}\) = cos [cos (x²)]\(\frac{d}{dx}\) [cos (x²)]
= cos [cos (x²)]. [-sin (x²)] \(\frac{d}{dx}\) (x²)
= cos [cos (x²)] [- sin (x²)]. 2x
= -2x . sin (x²).cos [cos (x²)]

vii) sec-1 (\(\frac{1}{2x^{2}-1}\)) (0 < x < \(\frac{1}{\sqrt{2}}\))
Solution:
x = cos θ
2x² – 1 = 2 cos² θ – 1 = cos 2θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 3

viii) sin-1 [tan-1 (e-x)]
Solution:
\(\frac{dy}{dx}\) = cos [tan-1 (e-x)]. [tan-1 (e-x)]¹
= cos (tan-1 (e-x)]x – \(\frac{1}{1+\left(e^{-x}\right)^{2}}\) (e-x
= \(\frac{-e^{-x}}{1+e^{-2 x}}\) . cos [tan-1 (e-x)]

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

Question 2.
Differentiate f(x) with respect to g(x) for the following.
i) f(x) = ex, g(x) = √x
Solution:
Let y = ex and z = √x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 4

ii) f(x) = esin x, g(x) = sin x.
Solution:
Let y = esin x and z = sin x.
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 5

iii) f(x) = tan-1 \(\frac{2x}{1-x^{2}}\), g(x) sin-1 = \(\frac{2x}{1+x^{2}}\)
Solution:
Lety = tan-1 \(\frac{2x}{1-x^{2}}\), and z = sin-1 = \(\frac{2x}{1+x^{2}}\)
Put x = tan θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 6

Question 3.
If y = ea sin-1x the prove that \(\frac{dy}{dx}\) = \(\frac{a y}{\sqrt{1-x^{2}}}\)
Solution:
y = ea sin-1x
\(\frac{dy}{dx}\) = ea sin-1x (a sin-1 x)¹
= ea sin-1x . a \(\frac{1}{\sqrt{1-x^{2}}}\) = \(\frac{a y}{\sqrt{1-x^{2}}}\)

II.

Question 1.
Find the derivatives of the following function.
i) tan-1 \(\left(\frac{3 a^{2} x-x^{3}}{a\left(a^{2}-3 x^{2}\right)}\right)\)
Solution:
Put x = a tan θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 7

ii) tan-1 (sec x + tan x)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 8

iii) tan-1 \(\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\)
Solution:
Put x = tan θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 9
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 10

iv) (logx)tan x
Solution:
log y = log (log x)tan x
= (tan x). log (log x)
Differentiating w.r.to x
\(\frac{1}{y}\) . \(\frac{dy}{dx}\) = tan x . \(\frac{d}{dx}\) (log(log x)) + log(logx) \(\frac{d}{dx}\) (tan x)
= tan x. \(\frac{1}{log x}\) . \(\frac{1}{x}\) + log(log x). sec² x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 11

v) (xx)x = x
Solution:
log y = log x = x². log x
\(\frac{1}{y}\) . \(\frac{dy}{dx}\) = x² . \(\frac{d(\log x)}{d x}\) + (log x ) \(\frac{d}{dx}\) (x²)
= x². \(\frac{1}{x}\) + 2x. log x
= x + 2x log x = x (1 + 2 log x).
= x (log e + log x²)
= x. log (ex²)
\(\frac{dy}{dx}\) = y. x. log (ex²)
= x . x. log (ex²)
= xx² +1 log (ex²)

vi) 20log (tan x)
Solution:
log y = log (20)log (tan x)
= log (tan x) log 20
Differentiating w. r. to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 12
\(\frac{dy}{dx}\) = y. (2 log 20). cosec 2x
= 20log (tan x) (2 log 20). cosec 2x

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

vii) xx + eex
Solution:
Let y1 = xx and y2 = eex so that y = y1 + y2.
y1 = xx ⇒ log y1 = log xx = x log x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 13

viii) x. log x. log (log x)
Solution:
\(\frac{dy}{dx}\) = x. log x \(\frac{d}{dx}\) (log. (log x)) + log (log x) logx. 1 + x. log (log x) \(\frac{1}{x}\).
= x log x. \(\frac{1}{log x}\) . \(\frac{1}{x}\) + log x. log (log x) + log (log x)
= 1 + log (logx) (1 + logx) = 1 + log (logx) + log x log (log x)
= log e + log (log x) + log x. log (log x)
= log (e log x) + log x. log (log x)

ix) e-ax² sin (x log x)
Solution:
\(\frac{dy}{dx}\) = e-ax² . \(\frac{d}{dx}\) (sin (x log x)) dx + sin (x log x) \(\frac{d}{dx}\) (e-ax²)
= e-ax² cos (x log x). (x . \(\frac{1}{x}\) + log x) + sin (x log x) e-ax² (-2ax)
= e-ax² [(cos (x log x) (1 + log x) – 2 ax. sin (x log x)]
= e-ax² (cos (x log x) (log ex) -2 ax. sin (x log x))

x) sin-1\(\left(\frac{2^{x+1}}{1+4^{x}}\right)\) (Put 2n = tan θ)
Solution:
sin-1\(\left(\frac{2^{x+1}}{1+4^{x}}\right)\)
Put 2x = tan θ.
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 14

Question 2.
Find \(\frac{dy}{dx}\) for the following functions.
i) x = 3 cos t – 2 cos³ t,
y = 3 sin t – 2 sin³ t
Solution:
\(\frac{dx}{dt}\) = – 3 sin t – 2(3 cos² t) (- sin t)
= – 3 sin t + 6 cos² t (sin t)
= 3 sin t (2 cos² t – 1)
= 3 sin t. cos 2t
y = 3 sin t – 2 sin³ t
\(\frac{dy}{dt}\) = 3 cos t – 2 (3 sin² t) (- cos t)
= 3 cos t (1 – 2 sin² t)
= 3 cos t. cos 2t
\(\frac{dy}{dx}\) = \(\frac{\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)}{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)}=\frac{3 \cos t \cos 2 t}{3 \sin t \cos 2 t}\) = cot t

ii) x = \(\frac{3 a t}{1+t^{3}}\), y = \(\frac{3 a t^{2}}{1+t^{3}}\)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 15

iii) x = a (cos t + t sin t), y = a (sin t – t cos t)
Solution:
\(\frac{dx}{dt}\) = a (- sin t + t cos t + sin t) = at cos t
∴ y = a (sin t – t cos t)
\(\frac{dy}{dt}\) = a (cos t – cos t + t sin t) = at sin t
\(\frac{dy}{dx}\) = \(\frac{\left(\frac{\mathrm{dy}}{\mathrm{dt}}\right)}{\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right)}=\frac{at\cos t}{at\cos t}\) = tan t

iv) x = a\(\left[\frac{\left(1-t^{2}\right)}{1+t^{2}}\right], \mathbf{y}=\frac{2 b t}{1+t^{2}}\)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 16
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 17

Question 3.
Differentiate f(x) with respect to g(x) for the following.
i) f(x) = logax, g(x) = ax.
Solution:
y = logax = \(\frac{\log x}{\log _{c}^{a}}\)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 18

ii) f(x) = sec-1 (\(\frac{1}{2x^{2}-1}\)) g(x) = \(\sqrt{1-x^{2}}\)
Solution:
Let y = sec-1 (\(\frac{1}{2x^{2}-1}\)) and z = \(\sqrt{1-x^{2}}\)
Put x = cos θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 19

iii) f(x) = tan-1\(\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\), g(x) = tan-1 x.
Solution:
Let y = tan-1\(\left(\frac{\sqrt{1+x^{2}}-1}{x}\right)\) and z = tan-1 x
x = tan z
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 20

Question 4.
Find the derivative of the function y defined implicitly by each of the following equations.
i) x4 + y4 – a² xy = 0
Solution:
Differentiate w.r.to x
4x³ + 4y³ . \(\frac{dy}{dx}\) – a²(x. \(\frac{dy}{dx}\) + y . 1 = 0)
4x³ + 4y³ . \(\frac{dy}{dx}\) – a²x\(\frac{dy}{dx}\) – a²y = 0
4y³ – a²x) \(\frac{dy}{dx}\) = a²y – 4x³ ; \(\frac{dy}{dx}\) = \(\frac{a^{2} y-4 x^{3}}{4 y^{3}-a^{2} x}\)

ii) y = xy
Solution:
log y = log xy = y log x
Differentiate w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 21

iii) yx = xsin y
Solution:
Take log on both sides
log yx = log xsin y ⇒ x. log y = (sin y) log x.
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 22
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 23

Question 5.
Establish the following.
i) If \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}\) = a(x – y), than \(\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{\sqrt{1-x^{2}}}\)
Solution:
Given \(\sqrt{1-x^{2}}+\sqrt{1-y^{2}}\) = a(x – y)
Put x = sin θ, y = sin Φ
Differentiating w.r. to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 24

ii) If y = x \(\sqrt{a^{2}+x^{2}}\) + a² log (x + \(\sqrt{a^{2}+x^{2}}\)), then \(\frac{dy}{dx}\) = 2 \(\sqrt{a^{2}+x^{2}}\)
Solution:
y ⇒ x\(\sqrt{a^{2}+x^{2}}\) + a² log (x + \(\sqrt{a^{2}+x^{2}}\))
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 25
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 26

iii) If xlog y = log x, then
Solution:
Given xlog y = log x, log xlog y = log log x
(log y) (log x) = log(logx).
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 27

iv) If y = Tan-1 \(\frac{2x}{1-x^{2}}\) + Tan-1 \(\frac{3x-x^{3}}{1-3x^{2}}\) – tan-1 \(\frac{4x-4x^{3}}{1-6x^{2}+x^{4}}\) than \(\frac{dy}{dx}\) = \(\frac{1}{1+x^{2}}\)
Solution:
Put x = tan θ
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 28
= tan-1 (tan 2θ) + tan-1 (tan 3θ) – tan-1 (tan 4θ)
= 2θ + 3θ – 4θ = θ = tan-1 x
∴ \(\frac{dy}{dx}\) = \(\frac{1}{1+x^{2}}\)

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

v) If xy = yx, then \(\frac{dy}{dx}\) = \(\frac{y(x log y – y)}{x(y log x – x)}\)
Solution:
Given xy = yx ; log xy = log yx
y log x = x log y
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 29

vi) If x2/3 + y2/3 = a2/3 then \(\frac{dy}{dx}\) = -3 √y/x
Solution:
Given x2/3 + y2/3 = a2/3
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 30

Question 6.
Find the derivative \(\frac{dy}{dx}\) of each of the following functions.
i) y = \(\frac{(1-2 x)^{2 / 3}(1+3 x)^{-3 / 4}}{(1-6 x)^{5 / 6}(1+7 x)^{-6 / 7}}\)
Solution:
log y = log \(\left\{\frac{(1-2 x)^{2 / 3}(1+3 x)^{-3 / 4}}{(1-6 x)^{5 / 6}(1+7 x)^{-6 / 7}}\right\}\)
= log (1 – 2x)2/3 + log (1 + 3x)-3/4 – log (1 – 6x)5/6 – log (1 + 7x)-6/7
= \(\frac{2}{3}\) log (1 – 2x) – \(\frac{3}{4}\) log (1 + 3x) – \(\frac{5}{6}\) log (1 – 6x) + \(\frac{6}{7}\) log (1 + 7x)
Differentiating w.r.to x
\(\frac{1}{y}\).\(\frac{dy}{dx}\) = \(\frac{2}{3}\) . \(\frac{1(-2)}{1-2x}\) – \(\frac{3}{4}\) . \(\frac{1}{1+3x}\) . 3
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 31

ii)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 32
Solution:
log y = log x4 + log (x² + 4)1/3 – log (4x² – 7)1/2
= 4 log x + \(\frac{1}{3}\) log (x² + 4) – \(\frac{1}{2}\) log (4x² – 7)
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 33

iii) y = \(\frac{(a-x)^{2}(b-x)^{3}}{(c-2 x)^{3}}\)
Solution:
log y = log \(\frac{(a-x)^{2}(b-x)^{3}}{(c-2 x)^{3}}\)
= log (a – x)² + log (b – x)³ – log (c – 2x)³
= 2 log (a – x) + 3 log (b – x) – 3 log (c – 2x)
Differentiating w.r.to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 34

iv)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 35
Solution:
log y = log \(\frac{x^{3}(2+3 x)^{1 / 2}}{(2+x)(1-x)}\)
= log x³ + log (2 + 3x)1/2 – log (2 + x) – log (1 – x)
= 3 log x + \(\frac{1}{2}\) log (2 + 3x) – log (2 + x) – log (1 – x)
Differentiating w.r. to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 36

v) y = \(\sqrt{\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}}\)
Solution:
log y = log(\(\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}\))1/2
= \(\frac{1}{2}\) log \(\frac{(x-3)\left(x^{2}+4\right)}{3 x^{2}+4 x+5}\)
= \(\frac{1}{2}\) (log (x – 3) + log (x² + 4) – log (3x² + 4x + 5))
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 37

III.

Question 1.
Find the derivatives of the following functions.
i) y = (sin x)logx + xsin x
Solution:
Let y1 =(sinx)logx, y2 = xsin x so that y = y1 + y2
y1 = (sin x)logx
log y1= log{ (Sin x)logx} = log x. log (sin x)
Differentiating w.r. to x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 38
y2 = xsin x
log y2 = (log x)sin x = sin x. logx
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 39

ii) xxx
Solution:
log y = log x(xxx) = xx. log X
\(\frac{1}{y}\) \(\frac{dy}{dx}\) = xx. \(\frac{1}{x}\) + (log x). xx (1 + log x)
[\(\frac{d}{dx}\)(xx) = xx (1 + log x)]
= xx-1 [1+ x log x (log e + log x)]
= xx-1 (1 + x. log x. log ex)
\(\frac{dy}{dx}\) = y.xx-1 (1 + x log x. log ex)
= x(xx) . xx-1 (1 + x log x. log ex)
= xxx+x-1 (1 + x log x. log ex)

Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c)

iii) (sin x)x + xsin x
Solution:
Let y1 = (sin x)x and y2 = xsin x
so that y = y1 + y2
log y1 = log (sin x)x = x. log sin x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 40
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 41

iv) xx + (cot x)x
Solution:
Let y1 = xx and y2 = (cot x)x
log y1 = log xx = x log x
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 42
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 43

Question 2.
Establish the following
i) If xy + yx = ab then
\(\frac{dy}{dx}\) = \(-\left(\frac{y \cdot x^{y-1}+y^{x} \cdot \log y}{x^{y} \cdot \log x+x \cdot y^{x-1}}\right)\)
Solution:
Let y1 = xy and y2 = yx. so that y1 + y2 = ab
logy1 = log xy = y logx
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 44

ii) If f(x) = sin-1\(\sqrt{\frac{x-\beta}{\alpha-\beta}}\) and
g(x) = tan \(\sqrt{\frac{x-\beta}{\alpha-x}}\) than
f'(x) = g'(x) (β < x < α)
Solution:
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 45
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 46

iii) If a > b > 0 and 0 < x < π
f(x) = (a – b)-1/2 . cos-1\(\left(\frac{a \cos x+b}{a+b \cos x}\right)\), than f'(x) = (a + b cos x)-1
Solution:
Let u = cos-1\(\left(\frac{a \cos x+b}{a+b \cos x}\right)\)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 47
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 48

Question 3.
Differentiate (x² – 5x + 8) (x³ + 7x + 9) by
i) Using product
ii) Obtaining a single polynomial expanding the product
iii) Logarithmic differentiation do they all give the same answer?
Solution:
Do Product rule:
y = (x² – 5x + 8) (x³ + 7x + 9)
\(\frac{dy}{dx}\) = (x² – 5x + 8) \(\frac{d}{dx}\)(x³ + 7x + 9) + (x³ + 7x + 9) \(\frac{d}{dx}\)(x² – 5x + 8)
= (x² – 5x + 8)(3x² + 7) + (x³ + 7x + 9)(2x – 5)
= 3x4 – 15x³ + 24x² + 7x² – 35x + 56 + 2x4 + 14x² + 18x – 15x³ – 35x – 45
= 5x4 – 20x³ + 45x² – 52x + 11 ……….. (1)

ii) Expanding the product :
Solution:
y = (x² – 5x + 8) (x³ + 7x + 9)
= 5x5 + 7x³ + 9x² – 5x4 -35x² – 45x + 8x³ + 56x + 72
= x5 – 5x4 + 15x³ – 26x² + 11x +72
\(\frac{dy}{dx}\) = 5x4 – 20x³ + 45x² – 52x + 11 ……….. (2)

iii) y = (x² – 5x + 8) (x³ + 7x + 9)
Solution:
log y = log (x² – 5x + 8) (x³ + 7x + 9)
= log (x² – 5x + 8) + log (x³ + 7x + 9)
Inter 1st Year Maths 1B Differentiation Solutions Ex 9(c) 49
= (2x – 5)(x³ + 7x + 9) + (x² – 5x + 8)(3x² + 7)
= 2x4 + 14x² + 18x – 5x³ – 35x – 45 + 3x4 -15x³ + 24x² + 7x² – 35x + 56
= 5x4 – 20x³ +45x² – 52x + 11 ……….. (3)
From (1), (2) and (3) we observe that all the three give same answer.