Inter 2nd Year Maths 2A Theory of Equations Important Questions

Students get through Maths 2A Important Questions Inter 2nd Year Maths 2A Theory of Equations Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2A Theory of Equations Important Questions

Question 1.
Form polynomial equation of the lowest degree, with roots 1, -1, 3 (May ’06)
Hint : Equation having roots, α, β, γ is [(x – α)(x – β)(x – γ) = 0
Solution:
Required equation is
(x – 1) (x + 1) (x – 3) = 0
⇒ (x2 – 1) (x – 3) = 0
⇒ -3x2 – x + 3 = 0

Question 2.
If 1, 1 α are the roots of
x3 – 6x2 + 9x – 4 = 0, then find α. (May ’11)
Solution:
1, 1, α are roots of x3 – 6x2 + 9x – 4 = 0
Sum = 1 + 1 + α = 6
α = 6 – 2 = 4

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 3.
If -1, 2 and α are the roots of 2x3 + x2 – 7x – 6 = 0, then find α (Mar 14, 13)
Solution:
-1, 2, α are roots of 2x3 + x2 – 7x – 6 = 0
sum = -1 + 2 + α = –\(\frac{1}{2}\)
α = –\(\frac{1}{2}\) – 1 = –\(\frac{3}{2}\)

Question 4.
If 1, -2 and 3 are roots of x3 – 2x2 + ax + 6 = 0, then find α. (Mar. ’04,)
Solution:
1, -2 and 3 are roots of x3 + x2 + ax – 6 = 0
x3 – 2x + ax + 6 = 0
⇒ 1(-2) + (-2) 3 + 3. 1 = a
i.e., a = -2 – 6 + 3 = -5

Question 5.
If the product of the roots of 4x3 + 16x2 – 9x – a = 0 is 9, then find a. (TS Mar. ’17, ’16)
Solution:
α, β, γ are the roots of
4x3 + 16x2 – 9x – a = 0
αβγ = \(\frac{a}{4}\) = 9 ⇒ a = 36

Question 6.
Find the transformed equation whose roots are the negative of the roots of
x4 + 5x3 + 11x + 3 = 0
Solution:
Given f(x) = x4 + 5x3 + 11x + 3 = 0
We want an equation whose roots are
1, α2, α3, α4,
Required equation f(-x) = 0
⇒ (-x)4 + 5 (-x)3 + 11 (-x) + 3 = 0
⇒ x4 – 5x3 – 11x + 3 = 0

Question 7.
Form the polynomial equation of degree 3 whose roots are 2, 3 and, 6.
Solution:
The required polynomial equation is,
(x – 2) (x – 3) (x – 6) = 0
⇒ x3 – 11x2 + 36x – 36 = 0

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 8.
Let α, β, γ be the roots of Σα3
Solution:
Σα3 = α3 + β3 + γ3
= (α + β + γ)
= (α2 + β2 + γ2 – αβ – βγ – γα) + 3αβγ
= (-p)(p2 – 2q – q) – 3r
= -p(p2 – 3q) – 3r
∴ Σα3 = -p3 + 3pq – 3r = 3pq – p3 – 3r

Question 9.
If α, β and 1 are the roots of x3 – 2x2 – 5x + 6 = 0, then find α and β (AP Mår ’16, ’08)
Solution:
α, β and 1 are the roots of
x3 – 2x2 – 5x + 6 = 0
Sum = α + β + 1 = 2 ⇒ α + β = 1
product = αβ = -6
(α – β)2 = (α + β )2 – 4αβ = 1 + 24 = 25
α – β = 5
α + β = 1
Adding 2α = 6 ⇒ α = 3
∴ α = 3 and β = -2

Question 10.
If α, β and γ are the roots of x3 – 2x2 + 3x – 4 = 0, then find
i) Σα2β2
ii) Σαβ (α + β)
Solution:
Since α, β, γ are the roots of
x3 – 2x2 + 3x – 4 = 0
then α + β + γ = 2
αβ + βγ + γα = 3
αβγ = 4

i) Σα2β2 = α2β2 + β2γ2 + γ2α2
= (αβ + βγ + γα)2 – 2αβγ(α + β + γ)
= 9 – 2. 2.4 = 9 – 16 = -7

ii) Σαβ (α + β) = α2β + β2γ + γ2α + αβ2 + βγ2 + γα2
= (αβ + βγ + γα)(α + β + γ) – 3αβγ
= 2.3 – 3.4 = 6 – 12 = -6.

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 11.
Solve the x3 – 3x2 – 6x + 8 = 0 equation, given that the roots of each are in A.P. (‘Mar. ’07)
Solution:
The roots of x3 – 3x2 – 6x + 8 = 0 are in A.P
Suppose a – d, a, a + d be the roots
Sum = a – d + a + a + d = 3
3a = 3
⇒ a = 1
∴ (x – 1) is a factor of x3 – 3x2 – 6x + 8 = 0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 34
⇒ x2 – 2x – 8 = 0
⇒ x2 – 4x + 2x – 8 = 0
⇒ x(x – 4) + 2(x – 4) = 0
⇒ x = 4, -2
∴ The roots are -2, 1, 4.

Question 12.
Solve x4 – 4x2 + 8x + 35 = 0, given that 2 + i \(\sqrt{3}\) is a root (AP Mar. ’15)
Solution:
Let 2 + i \(\sqrt{3}\) is one root
⇒ 2 – i \(\sqrt{3}\) is another root.
The equation having roots
2 ± i \(\sqrt{3}\) is x2 – 4x + 7 = 0
∴ x2 – 4x + 7 is a factor of
Inter 2nd Year Maths 2A Theory of Equations Important Questions 35
∴ The roots of the given equation are 2 ± i\(\sqrt{3}\), -2 ± i

Question 13.
Find the polynomial equation whose roots are the reciprocals of the roots of x4 – 3x3 + 7x2 + 5x – 2 = 0 (TS Mar. ’15, ’11)
Solution:
Given equation is
f(x) = x4 – 3x3 + 7x2 + 5x – 2 = 0
Required equation is f(\(\frac{1}{x}\)) = 0
i.e. \(\frac{1}{x^{4}}\) – \(\frac{3}{x^{3}}\) + \(\frac{7}{x^{2}}\) + \(\frac{5}{x}\) – 2 = 0
Multiplying with x4
⇒ 1 – 3x + 7x2 + 5x3 – 2x4 = 0
i.e., 2x4 – 5x3 – 7x2 + 3x – 1 = 0

Question 14.
Find the polynomial equation whose roots are the translates of those of x5 – 4x4 + 3x2 – 4x + 6 = 0 by -3. (TS Mar. 16)
Solution:
Given equation is
f(x) = x5 – 4x4 + 3x2 – 4x + 6 = 0
Required equation is f(x + 3) = 0
(x + 3)5 – 4(x + 3)4 + 3(x + 3)2
Inter 2nd Year Maths 2A Theory of Equations Important Questions 36
Required equation is
x5 + 11x4 + 42x3 + 57x2 – 13x – 60 = 0

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 15.
Show that x5 – 5x3 + 5x2 – 1 = 0 has three equal roots and find this root. (TS Mar. ’17)
Solution:
Let f(x) = x5 – 5x3 + 5x2 – 1
f'(x) = 5x4 – 15x2 + 10x
= 5x (x3 – 3x + 2)
f'(1) = 5(1) (1 – 3 + 2) = 0
f(1) = 1 – 5 + 5 – 1 = 0
x – 1 is a factor of f'(x) and f(x)
∴ 1 is a repeated’ root of f(x).
Inter 2nd Year Maths 2A Theory of Equations Important Questions 37
⇒ 1 is a root of above equation
(∵ sum of the coefficients is zero)
∴ 1 is the required root.

Question 16.
Solve the 8x3 – 36x2 – 18x + 81 = 0 equation, given that the roots of each are in AP. (Mar. 04’)
Soluution:
Given the roots of 8x3 – 36x2 – 18x + 81 = 0 are in AP.
Let the roots be a – d, a, a + d
Sum of the roots = a – d + a + a + d
= \(\frac{36}{8}\) = \(\frac{9}{2}\)
i.e., 3a = \(\frac{9}{2}\) ⇒ a = \(\frac{3}{2}\)
∴ (x – \(\frac{3}{2}\)) is a factor of
Inter 2nd Year Maths 2A Theory of Equations Important Questions 38
⇒ 8x2 – 24x – 54 = 0
⇒ 4x2 – 12x – 27 = 0
⇒ 4x2 – 18x + 6x – 27 = 0
⇒ 2x(2x – 9) + 3 (2x – 9) = 0
⇒ (2x + 3) (2x – 9) = 0
⇒ x = –\(\frac{3}{2}\), \(\frac{9}{2}\)
The roots are –\(\frac{3}{2}\), \(\frac{3}{2}\), \(\frac{9}{2}\)

Question 17.
Solve the 3x3 – 26x2 + 52x – 24 = 0 equations, given that the roots of each are in GP.
(TS Mar. ’15)
Solution:
Given equation is 3x3 – 26x2 + 52x – 24 = 0
The roots are in G.P.
Suppose \(\frac{a}{r}\), a, ar are the roots.
Product = \(\frac{a}{r}\).a.ar = –\(\left(-\frac{24}{3}\right)\)
a3 = 8 ⇒ a = 2
∴ (x – 2) is a factor of 3x3 – 26x2 + 52x – 24
Inter 2nd Year Maths 2A Theory of Equations Important Questions 39
⇒ 3x3 – 20x + 12 = 0
⇒ 3x2 – 18x – 2x + 12 = 0
⇒ 3x (x – 6) -2 (x – 6) = 0
⇒ (3x – 2)(x – 6) = 0
⇒ x = \(\frac{2}{3}\), 6
∴ The roots are \(\frac{2}{3}\), 2, 6.

Question 18.
Solve 18x3 + 81x2 + 121x + 60 = 0 given that one root is equal to half the sum of the
remaining roots. (May ’11; Mar. ’05)
Solution:
Suppose α, β, γ are the roots of 18x3 + 81x2 + 121x + 60 = 0.
Inter 2nd Year Maths 2A Theory of Equations Important Questions 40
Inter 2nd Year Maths 2A Theory of Equations Important Questions 41

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 19.
Solve the equation
2x5 + x4 – 12x3 – 12x2 + x + 2 = 0 (AP Mar.17, 16; Mar. ‘08, 07)
Solution:
Given f(x) = 2x5 + x4 – 12x3 – 12x2 + x + 2 = 0
This is an odd degree reciprocal equation of first type.
∴ -1 is a root.
Dividing f(x) with x + 1
Inter 2nd Year Maths 2A Theory of Equations Important Questions 42
Dividing f(x) by (x + 1) we get
2x4 – x3 – 11x2 – x + 2 = 0
Dividing by x2
Inter 2nd Year Maths 2A Theory of Equations Important Questions 43
Substituting in (1), required equation is
2(a2 – 2) – a – 11 = 0 .
2a2 – 4 – a – 11 = 0
2a2 – a – 15 = 0
(a – 3)(2a + 5) = 0
a = 3 or \(-\frac{5}{2}\)
Case (i) a = 3
Inter 2nd Year Maths 2A Theory of Equations Important Questions 44

Question 20.
Find the roots of
x4 – 16x3 + 86x2 – 176x + 105 = 0
Solution:
Let f(x) = x4 – 16x3 + 86x2 – 176x + 105
Now, f(1) = 1 – 16 + 86 – 176 + 105 = 0
∴ 1 is a root of f(x) = 0
⇒ x – 1 is a factor of f(x)
Inter 2nd Year Maths 2A Theory of Equations Important Questions 45
∴ f(x) = (x – 1) (x3 – 15x2 + 71x – 105)
= (x – 1) g(x) where
g(x) = x3 – 15x2 + 71x – 105
g(1) = 1 – 15 + 71 – 105 = -48 ≠ 0
g(2) = -15 ≠ 0
g(3) = 27 – 135 + 213 – 105 = 0
∴ 3 is a root of g(x) =0
⇒ x – 3 is a factor of g(x)
Inter 2nd Year Maths 2A Theory of Equations Important Questions 46
∴ g(x) = (x – 3) (x2 – 12x + 35)
= (x – 3) (x – 5) (x – 7)
∴ f(x) = (x – 1) (x – 3) (x – 5) (x – 7)
∴ 1, 3, 5, 7 are the roots of f(x) = 0.

Question 21.
Solve 4x3 – 24x2 + 23x + 18 = 0, given that the roots of this equation are in arithmetic progression (Mar. ’14; May ’06)
Solution:
Let a – d, a, a + d are the roots of the given equation
Now, sum of the roots
a – d + a + a + d = \(\frac{24}{4}\)
3a = 6
a = 2
Product of the roots (a – d) a (a + d) = \(-\frac{18}{4}\)
a(a2 – d) = \(-\frac{9}{2}\)
2(4 – d2) = \(-\frac{9}{2}\)
4(4 – d2) = -9
16 – 4d2 = -9
4d2 = 25
d = ±\(\frac{5}{2}\)
∴ roots are –\(\frac{1}{2}\), 2 and \(\frac{9}{2}\)

Question 22.
Find the polynomial equation whose roots are the squares of the roots of x5 + 4x3 – x2 + 11 = 0 by -3. (Mar. ’06)
Solution:
Let f (x) ≡ x5 + 4x3 – x2 + 11
The required equation is f(x + 3) = 0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 47
The required equation is
x5 + 15x4 + 94x3 + 305x2 + 507x + 353 = 0

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 23.
Solve the equation 6x4 – 35x3 + 62x2 – 35x + 6 = 0. (May. 13)
Solution:
We observe that the given equation is an even degree reciprocal equation of class one. On dividing both sides of the given equation by x2, we get
Inter 2nd Year Maths 2A Theory of Equations Important Questions 48
Then the above equation reduces to
6(y2 – 2) – 35y + 62 = 0
i.e., 6y2 – 35y + 50 = 0
i.e., (2y – 5)(3y – 10) = 0.
Hence the roots of 6y2 – 35y + 50 = 0 are \(\frac{5}{2}\) and \(\frac{10}{3}\).
Inter 2nd Year Maths 2A Theory of Equations Important Questions 49
Hence the roots of the given equation are \(\frac{1}{2}\), \(\frac{1}{3}\), 2 and 3.

Question 24.
Solve x5 – 5x4 + 9x3 – 9x2 + 5x – 1 = 0. (Mar. ’13)
Solution:
Given equation is
x5 – 5x4 + 9x3 – 9x2 + 5x – 1 = 0 is a reciprocal equation of odd degree and of class two.
∴ 1 is a root of the given equation.
⇒ (x – 1) is a factor of
x5 + 4x3 + 5x2 – 4x2 + 1 = 0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 50
Inter 2nd Year Maths 2A Theory of Equations Important Questions 51

Question 25.
Form the polynomial equation of degree 3 whose roots are 2, 3 and 6. (Mar. ’02)
Solution:
The required polynomial equation is,
(x – 2) (x – 3)(x – 6) = 0
⇒ x3 – 11x3 + 36x – 36 = 0

Question 26.
Find the relation between the roots and the coefficients of the cubic equation
3x3 – 10x2 + 7x + 10 = 0.
Solution:
3x3 – 10x2 + 7x + 1o = 0 ———- (1)
On.comparing (1) with
ax3 + bx2 + cx + d = 0,
we have
Inter 2nd Year Maths 2A Theory of Equations Important Questions 1

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 27.
Write down the relations between the roots and the coefficients of the bi-quadratic equation.
x4 – 2x3 + 4x2 + 6x – 21 = 0
Solution:
Given equation is
x4 – 2x3 + 4x2 + 6x – 21 = 0 —— (1)
On comparing (1) with
ax4 + bx3 + cx2 + dx + c = 0,
we have
Inter 2nd Year Maths 2A Theory of Equations Important Questions 2

Question 28.
If 1, 2, 3 and 4 are the roots of x4 + ax3 + bx2 + cx + d = 0, then find the
values of a, b, c and d.
Solution:
Given that the roots of the given equation are 1, 2, 3 and 4. Then
x4 + ax3 + bx2 + cx + d
≡ (x – 1) (x – 2) (x – 3) (x – 4) = 0
≡ x4 – 10x3 + 35x2 – 50x + 24 = 0
On equating the coefficients of like powers of x, we obtain
a = -10, b = 35, c = -50, d = 24

Question 29.
if a, b, c are the roots of
x3 – px2 + qx- r = 0 and r ≠ 0, then find \(\frac{1}{\mathbf{a}^{2}}+\frac{1}{\mathbf{b}^{2}}+\frac{1}{\mathrm{c}^{2}}\) interms of p, q, r.
Solution:
Given that a, b, c are the roots of
x3 – px2 + qx – r = 0, then
a + b + c = p, ab + bc + ca = q, abc = r
Inter 2nd Year Maths 2A Theory of Equations Important Questions 4

Question 30.
Find the sum of the squares and the sum of the cubes of the roots of the equation x3 – px2 + qx – r = 0 in terms of p, q, r.
Solution:
Let α, β, γ be the roots of the given equation then α + β + γ = p, αβ + βγ + γα = q, αβγ = r
Sum of the squares of the roots is α2 + β2 + γ2
= (α + β + γ)2 – 2(αβ + βγ + γα) = p2 – 2q
Sum of the cubes of the roots is α3 + β3 + γ3
= (α + β + γ) (α2 + β2 + γ2 – αβ – βγ – γα) + 3αβγ
= p(p2 – 2q – q) + 3r
= p(p2 – 3q) + 3r

Question 31.
Obtain the cubic equation, whose roots are the sqüares of the roots of the equation, x3 + p1x2 + P2x + p3 = 0
Solution:
The required equation is, f(\(\sqrt{x}\)) =0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 5

Question 32.
Let α, β, γ be the roots of
x3 + px2 + qx + r = 0. Then find the
i) Σα2
ii) Σ\(\frac{1}{\alpha}\)
iii) Σα3
iv) Σβ2γ2
v) Σ(α + β) (β + γ) (γ + α)
Solution:
since α, β, γ are the roots of the equation, we have α + β + γ = – p,
αβ + βγ + γα = q, αβγ = -r.

i) Σα2
Solution:
Σα2 = α2 + β2 + γ2
= (α + β + γ) – 2(αβ + βγ + γα)
= p2 – 2q

ii) Σ\(\frac{1}{\alpha}\)
Solution:
Inter 2nd Year Maths 2A Theory of Equations Important Questions 6

Inter 2nd Year Maths 2A Theory of Equations Important Questions

iii) Σα3
Solution:
Inter 2nd Year Maths 2A Theory of Equations Important Questions 7

iv) Σβ2γ2
Solution:
Inter 2nd Year Maths 2A Theory of Equations Important Questions 8

v) (α + β) (β + γ) (γ + α)
Solution:
We know, α + β + γ = -p
⇒ α + β = -p – r and β + γ = -p – α
= γ + α = -p – β
∴ (α + β) (β + γ)(γ + α)
= (-p – γ) (-p – α) (-p – β)
= -p3 – p2(α + β + γ) – p(αβ + βγ + γα) – αβγ
= -p3 + p3 – pq + r = r – pq .

Question 33.
Let α, β, γ be the roots of
x3 + ax2 + bx + c = 0 then find Σα2 + Σβ2
Solution:
Since α, β, γ are roots of the given equation,
Inter 2nd Year Maths 2A Theory of Equations Important Questions 9

Question 34.
If α, β, γ are the roots of x3 + px2 + qx + r = 0, then form the cubic equation whose roots are .
α(β + γ), β(γ + α), γ(α + β)
Solution:
Let α, β, γ be the roots of the given equation.
we have, α + β + γ = – p, αβ + βγ + γα = q, αβγ = -r
Let y = α(β + γ)
= αβ + αγ + γβ – βγ
Inter 2nd Year Maths 2A Theory of Equations Important Questions 10

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 35.
Solve x3 – 3x2 – 16x + 48 = 0
Solution:
Let f(x) = x3 – 3x2 – 16x + 48
by inspection, f(3) = 0
Hence 3 is a root of 1(x) = 0
Now we divide f(x) by (x – 3)
Inter 2nd Year Maths 2A Theory of Equations Important Questions 11

Question 36.
Find the roots of
x4 – 16x3 + 86x2 – 176x + 105 = 0 (Mar. ‘02)
Solution:
Let f(x) = x4 – 16x3 + 86x2 – 176x + 105
Now if (1) = 1 – 16 + 86 – 176 + 105 = 0
∴ 1 is a root of f(x) = 0
⇒ x – 1 is a factor of f(x)
Inter 2nd Year Maths 2A Theory of Equations Important Questions 12
∴ g(x) = (x – 3)(x2 – 12x + 35)
= (x – 3) (x – 5) (x – 7)
∴ f(x) = (x – 1) (x – 3) (x – 5) (x – 7)
∴ 1, 3, 5, 7 are the roots of f(x) = 0.

Question 37.
Solve x3 – 7x2 + 36 = 0, given one root being twice the other.
Solution:
Let α, β, γ be the root of the equation
x3 – 7x2 + 36 = 0 and
let β = 2α
Now, we have, α + β + γ = 7
⇒ 3α + γ = 7 —— (1)
αβ + βγ + γα = 0
⇒ 2α2 + 3αγ = 0 —— (2)
αβγ = -36 ⇒ 2α2γ = -36 —— (3)
From (1) and (2), we have
2 + 3α(7 – 3α) = 0
i.e., α2 – 3α = 0 (or) α(α – 3) = 0
∴ α = 0 or α = 3
Since α = 0 does not satisfy the given equation.
∴ α = 3, so β = 6 and γ = -2
∴ The roots are 3, 6, -2.

Question 38.
Given that 2 is a root of
x3 – 6x2 + 3x + 1o = 0, find the other roots.
Solution:
Let f(x) = x3 – 6x2 + 3x + 10
Since 2 is a root of f(x) = 0, we divide f(x) by (x – 2)
Inter 2nd Year Maths 2A Theory of Equations Important Questions 13
∴ -1, 2, and 5 are the roots of the given equation.

Question 39.
Given that two roots of
4x3 + 20x2 – 23x + 6 = 0 are equal, find all the roots of the given equation.
Solution:
Let α, β, γ are the roots of
4x3 + 20x2 – 23x + 6 = 0
Given two roots are equal, let α = β
Inter 2nd Year Maths 2A Theory of Equations Important Questions 14
⇒ 12α2 + 4α – 23 = 0
⇒ (2α – 1) (6α + 23) = 0
α = \(\frac{1}{2}\), α = \(\frac{-23}{6}\)
On verfication, we get that is a root of (1)
α = \(\frac{1}{2}\) is roots of (1)
(2) ⇒ roots are \(\frac{1}{2}\), \(\frac{1}{2}\), -6

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 40.
Given that the sum of two roots of
x4 – 2x3 + 4x2 + 6x – 21 = 0 is zero find the roots of the equation.
Solution:
Let α, β, γ, δ are the roots of given equation, since sum of two is zero.
α + β = 0
Now α + β + γ + δ = 2 ⇒ γ + δ = 2
Let αβ = p, γδ = q
The equation having the roots α, β is
Inter 2nd Year Maths 2A Theory of Equations Important Questions 15
∴ Roots are –\(\sqrt{3}\), \(\sqrt{3}\), 1 – i \(\sqrt{6}\) and 1 + i \(\sqrt{6}\)

Question 41.
Solve 4x3 – 24x2 + 23x + 18 = 0, given that the roots of this equation are in arithmetic progression. (Mar. 14, May ‘06)
Solution:
Let a – d, a, a + d are the roots of the given equation
Now, sum of the roots
a – d + a + a + d = \(\frac{24}{4}\)
3a = 6
a = 2
Product of the roots (a – d) a (a + d) = \(\frac{-18}{4}\)
a(a2 – d2) = \(\frac{-9}{2}\)
2(4 – d2) = \(\frac{-9}{2}\)
4(4 – d2) = -9
16 – d2 = -9
4d2 = 25
d = ± \(\frac{5}{2}\)
∴ roots are –\(\frac{1}{2}\), 2 and \(\frac{9}{2}\)

Question 42.
Solve x3 – 7x2 + 14x – 8 = 0, given that the roots are in geometric progression.
Solution:
Let \(\frac{a}{r}\), a, ar be the roots of the given equation. Then .
Inter 2nd Year Maths 2A Theory of Equations Important Questions 16
Hence a = 2. On substituting a = 2 in (1), we obtain
\(\frac{2}{r}\) + 2 + 2r = 7
i.e., 2r2 – 5r + 2 = 0
i.e., (r – 2) (2r – 1) = 0
Therefore r = 2 or r = \(\frac{1}{2}\)
Hence the roots of the given equation are 1, 2 and 4.

Question 43.
Solve x4 – 5x3 + 5x2 + 5x – 6 = 0 given that the product of two of its roots is 3.
Solution:
Let α, β, γ, δ be the roots of the given equation.
Product of the roots αβγδ = -6
Given αβ = 3 (∵ Product of two roots is 3)
∴ α, β, γ, δ = -6
γδ = -2
Let α + β, γ + δ = q
The equation having the roots α,β is
x2 – (α + β) x + αβ = 0
x2 + px + 3 = 0
The equation having the roots γ, δ is
x2 – (γ + δ)x + γδ = 0
x2 – qx – 2 = 0
∴ x4 – 5x3 + 5x2 + 5x – 6
= (x2 – px + 3)(x2 – qx – 2)
= x4 – (p + q)x3 + (1 + pq)x2 + (2p – 3q)x – 6
Comparing the like terms,
p + q = 5, 2p – 3q = 5
∴ 2p – 3q = 5
3p + 3q = 15
5p = 20 ⇒ p = 4
∴ q = 1
Now x2 – 4x + 3 = 0 ⇒ (x – 3)(x – 1) = 0
⇒ x = 1, 3
x2 – x – 2 = 0 ⇒ (x – 2)(x + 1) = 0
⇒ x = -1, 2
∴ The roots are -1, 2, 1, 3

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 44.
Solve x6 + 4x3 – 2x2 – 12x + 9 = 0, Given that it has two pairš of equal roots.
Solution:
Given equation is
x4 + 4x3 – 2x2 – 12x + 9 = 0
Let the roots be α, α, β, β
Sum of the roots, 2(α + β) = -4
⇒ α + β = -2
Let αβ = p
The equation having roots α, β is
x2 – (α + β)x + αβ = 0
i.e. x2 + 2x + p = 0
∴ x4 + 4x3 – 2x2 – 12x + 9
= [x2 – (α + β)x + αβ]2
= (x2 + 2x + p)2
= x4 + 4x3 + (2p + 4)x2 + 4px + p2
Comparing coefficients of x on both sides
4p = -12 ⇒ p = – 3
x2 + 2x + p = 0 ⇒ x2 + 2x – 3 = 0
⇒ (x + 3)(x – 1) = 0
⇒ x = -3, 1
∴ The roots of the given equation are -3, -3, 1, 1

Question 45.
Prove that the sum of any two of the roots of the equation x4 + px3 + qx2 + rx + s = 0 is equal to the sum of the remaining two roots of the equation iff p3 – 4pq + 8r = 0.
Solution:
Suppose that the sum of two of the roots of the given equation is equal to the sum of the remaining two roots.
Let α, β, γ, δ be roots of the given equation such that α + β = γ + δ
Inter 2nd Year Maths 2A Theory of Equations Important Questions 17
From these equations, we have
Inter 2nd Year Maths 2A Theory of Equations Important Questions 18
Then equations (1), (2) and (4) are satisfied. In view of (5), equation (3) is also satisfied. Hence (x2 + bx + c)(x2 + bx + d) = x4 + 2bx3 + (b2 + c + d)x2 + b(c + d)x + cd = x4 + px3 + qx2 + rx + s
Hence the roots of the given equation are α1, β1, γ1 and δ1. where α1 and β1 are the roots of the equations x2 + bx + c = 0 and γ1 and δ1 are those of the equation x2 + bx + d = 0.
We have α1 + β1 = -b = γ1 + δ1.

Question 46.
Form the polynomial equation of degree 4 whose roots are
4 + \(\sqrt{3}\), 4 – \(\sqrt{3}\), 2 + i and 2 – i
Solution:
The equation having roots 4 + \(\sqrt{3}\), 4 – \(\sqrt{3}\) is
x2 – 8x + 13 = 0
The equation having roots 2 + i, 2 – i is
x2 – 4x + 5 = 0.
The required equation is
(x2 – 8x + 13) (x2 – 4x + 5) = 0
∴ x4 – 12x3 + 50x2 – 92x + 65 = 0

Question 47.
Solve 6x4 – 13x3 – 35x2 – x + 3 = 0 given that one of its root is 2 + \(\sqrt{3}\).
Solution:
2 + \(\sqrt{3}\) is a root 2 – \(\sqrt{3}\) is also a root.
The equation having roots
Inter 2nd Year Maths 2A Theory of Equations Important Questions 19

Question 48.
Find the polynomial equation of degree 4 whose roots are the negatives of the roots of x4 – 6x3 + 7x2 – 2x + 1 = 0
Solution:
Let f(x) ≡ x4 – 6x3 + 7x2 – 2x + 1
The required equation is f(-x) = 0
i.e., (-x)4 – 6(-x)3 + 7(-x)2 + 2(-x) + 1 = 0
∴ x4 + 6x3 + 7x2 + 2x + 1 = 0

Question 49.
Find the algebraic equation of the degree 4 whose roots are 3 times the roots of the equation
6x4 – 7x3 + 8x2 – 7x + 2 = 0
Solution:
Let f(x) ≡ 6x4 – 7x3 + 8x2 – 7x +2
The required equation is f\(\left(\frac{x}{3}\right)\) = o
Inter 2nd Year Maths 2A Theory of Equations Important Questions 20

Question 50.
Form the equation whose roots are m times the roots of the equation x3 + \(\frac{x^{2}}{4}\) – \(\frac{x}{16}\) + \(\frac{1}{72}\) = 0 and deduce the case when m = 12.
Solution:
Inter 2nd Year Maths 2A Theory of Equations Important Questions 21

Question 51.
Find the algebraic equation of degree 5 whose roots are the translates of the roots of x5 + 4x3 – x2 + 11 = 0 by -3. (Mar. ’06)
Solution:
Let f (x) ≡ x5 + 4x3 – x2 + 11
The required equation is f(x + 3) = 0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 22
The required equation is
x5 + 15x4 + 94x3 + 305x2 + 507x + 353 = 0

Question 52.
Find the algebraic equation of degree 4 whose roots are the translates of the roots
4x4 + 32x3 + 83x2 + 76x + 21 = 0 by 2.
Solution:
Let f(x) ≡ 4x4 + 32x3 + 83x2 + 76x + 21
The required equation is f(x – 2) = 0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 23
The required equation is
4x4 – 13x2 + 9 = 0

Question 53.
Find the polynomial equation whose roots are the reciprocals of the roots of the equation
x4 + 3x3 – 6x2 + 2x -4 = 0
Solution:
Let f(x) ≡ x4 + 3x3 – 6x2 + 2x – 4
Inter 2nd Year Maths 2A Theory of Equations Important Questions 24

Question 54.
Find the polynomial equation whose roots are the squares of the roots of x3 – x2 + 8x – 6 = 0
Solution:
Let f(x) ≡ x3 – x2 + 8x – 6 .
The required equation is f(\(\sqrt{x}\)) = o
Inter 2nd Year Maths 2A Theory of Equations Important Questions 26
Squaring on both sides
⇒ x(x2 + 16x + 64) = x2 + 12x + 36
= x3 + 6x2 + 64x – x2 – 12x – 36 = 0
∴ x3 + 15x2 + 52x – 36 = 0

Inter 2nd Year Maths 2A Theory of Equations Important Questions

Question 55.
Show that 2x3 + 5x2 + 5x + 2 = 0 is a reciprocal equation of class one.
Solution:
Given equation is 2x3 + 5x2 + 5x + 2 = 0
P0 = 2, p1 = 5, P2 = 5, p3 = 2
Here P0 = p3, p1 = p2
∴ The equation 2x3 + 5x2 + 5x + 2 = 0 is a reciprocal equation of class one.

Question 56.
Solve the equation
4x3 – 13x2 – 13x + 4 = 0
Solution:
4x3 – 13x2 – 13x + 4 = 0 is a reciprocal equation of first class and of odd degree.
Thus -1 is a root of the 9iven equation.
Inter 2nd Year Maths 2A Theory of Equations Important Questions 27
4x2 – 17x + 4 = 0 ⇒ 4x2 – 16x – x + 4 = 0
⇒ 4x(x – 4) – 1 (x – 4) = 0
⇒ (x – 4)(4x – 1) = 0
⇒ x = 4 or \(\frac{1}{4}\)
The roots are -1, 4, \(\frac{1}{4}\)

Question 57.
Solve the equation 6x4 – 35x3 + 62x2 – 35x + 6 = 0. (May ‘13)
Solution:
We observe that the given equation is an even degree reciprocal equation of class one.
On dividing both sides 6f the given equation by x2, we get
Inter 2nd Year Maths 2A Theory of Equations Important Questions 28
Then the above equation reduces to
6(y2 – 2) – 35y + 62 = 0
i.e., 6y2 – 35y + 50 = 0
i.e., (2y – 5) (3y – 10) = 0.
Hence the roots of 6y2 – 35y + 50 = 0 are \(\frac{5}{2}\) and \(\frac{10}{3}\).
Therefore x + \(\frac{1}{x}\) = \(\frac{5}{2}\) and x + \(\frac{1}{x}\) = \(\frac{10}{3}\)
i.e., 2x2 – 5x + 2 = 0 and 3x2 – 10x + 3 = 0.
The roots of these equations are respectively
Inter 2nd Year Maths 2A Theory of Equations Important Questions 29
Hence the roots of the given equation are \(\frac{1}{2}\), \(\frac{1}{3}\), 2 and 3.

Question 58.
Solve x5 – 5x4 – 9x3 – 9x2 + 5x – 1 = 0. (Mar ’13)
Solution:
Given equation is
x5 – 5x4 + 9x3 – 9x2 + 5x – 1 = 0 is a reciprocal equation’of odd degree and of class two.
∴ 1 is a root of the given equation.
⇒ (x – 1) is a factor of
x5 – 5x4 + 9x3 – 9x2 + 5x – 1 = 0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 30
Inter 2nd Year Maths 2A Theory of Equations Important Questions 31

Question 59.
Solve the equation
6x6 – 25x5 + 31x4 – 31x2 + 25x – 6 = 0
Solution:
Given equation is
6x6 – 25x5 + 31x4 – 31x2 + 25x – 6 = 0 is a reciprocal equation of second class and of even degree.
∴ x2 – 1 is a factor of
6x6 – 25x5 + 31x4 – 31x2 + 25x – 6 = 0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 32
∴ (1) becomes 6(y2 – 2) – 25(y) + 37 = 0
⇒ 6y2 – 12 – 25y + 37 = 0
⇒ 6y2 – 25y + 25 = 0
⇒ 6y2 – 15y – 10y + 25 = 0
⇒ 3y(2y – 5) – 5(2y – 5) = 0
⇒ (2y – 5)(3y – 5) = 0
Inter 2nd Year Maths 2A Theory of Equations Important Questions 33

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Students get through Maths 2A Important Questions Inter 2nd Year Maths 2A Quadratic Expressions Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 1.
Form quadratic equation whose root 7 ± 2\(\sqrt{5}\) (Mar. ’11, ’05)
Solution:
α + β = 7 + 2\(\sqrt{5}\) + 7 – 2\(\sqrt{5}\) = 14
αβ = (7 + 2\(\sqrt{5}\)) (7 – 2\(\sqrt{5}\)) = 49 – 20 = 29
The required equation is
x2 – (α + β)x + αβ = 0
x2 – 14x + 29 = 0

Question 2.
Form quadratic equation whose root -3 ± 5i. (Mar. ’07)
Solution:
α + β = -3 + 5i – 3 – 51 = -6
αβ = (-3 + 5i)(-3 – 5i)
= 9 + 25 = 34
The required equation is
x2 – (α + β)x + αβ = 0
x2 + 6x + 34 = 0

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 3.
For what values of x, 15 + 4x – 3x2 expressions are negative? (AP Mar. ’15)
Solution:
The roots of 15 + 4x – 3x2 = 0 are
\(\frac{-4 \pm \sqrt{16+180}}{-6}\) i.e., \(\frac{-5}{3}\), 3
∴ The expression 15 + 4x – 3x2 is negative if
x < \(\frac{-5}{3}\) or x > 31 ∵ a = -3 < 0

Question 4.
If α, β are the roots of the equation ax2 + bx + c = 0, find the value \(\frac{1}{\alpha^{2}}\) + \(\frac{1}{\beta^{2}}\) expressions in terms of a, b, c. (AP & TS Mar. ‘16, 08)
Solution:
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 27

Question 5.
Form quadratic equation whose root
\(\frac{p-q}{p+q}\), \(\frac{-p+q}{p-q}\), (p ≠ ±q) (Mar. ’06)
Solution:
α + β = \(\frac{p-q}{p+q}\) – \(\frac{p+q}{p-q}\)
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 28

Question 6.
Find the values of m for which the following equations have equal roots?
i) x2 – 15 – m(2x – 8) = 0. (AP Mar. ’17) (TS Mar. ’15 13)
Solution:
Given equation is x2 – 15 – m(2x – 8) = 0
x2 – 2mx + 8m – 15 = 0
a = 1, b = -2m, c = 8m – 15
b2 – 4ac = (-2m)2 – 4(1) (8m – 15)
= 4m2 – 32m + 60
= 4(m2 – 8m + 15)
= 4(m – 3)(m – 5)
Hint: If the equation ax2 + bx + c = 0 has equal roots then its discriminant is zero.
∵ The roots are equal b2 – 4ac = 0
⇒ 4(m – 3) (m – 5) = 0
⇒ m – 3 = 0 or m – 5 = 0
∴ m = 3 or 5

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 7.
(m + 1)x2 + 2(m + 3)x + (m + 8) = 0.
Solution:
Given equation is
(m + 1)x2 + 2(m + 3)x + (m + 8) = 0
a = m + 1, b = 2(m + 3), c = m + 8
b2 – 4ac = (2(m + 3)]2 – 4(m + 1) (m + 8)]
= 4(m2 + 6m + 9) – 4(m2 + 8m + m + 8)
= 4m2 + 24m + 36 – 4m2 – 36 m – 32
= -12m + 4
= -4(3m – 1)
∵ The roots are equal ⇒ b2 – 4ac = 0
⇒ -4(3m – 1) = 0
⇒ 3m – 1 = 0
⇒ 3m = 1
∴ m = \(\frac{1}{3}\)

Question 8.
If x is real, prove that \(\frac{x}{x^{2}-5 x+9}\) lies between 1 and \(\frac{-1}{11}\). (Mar. ‘14, 13, ‘08, ‘02; May 11, ‘07)
Solution:
Let y = \(\frac{x}{x^{2}-5 x+9}\) ⇒ yx2 – 5yx + 9y = x
⇒ yx2 + (-5y – 1)x + 9y = 0
x ∈ R ⇒ (-5y – 1)2 – 4y(9y) ≥ 0
⇒ 25y2 + 1 + 10y – 36y2 ≥ 0
⇒ -11y2 + 10y + 1 ≥ 0 —— (1)
⇒ -11y2 + 10y + 1 = 0 ⇒ -11y2 + 11y – y + 1 = 0
⇒ 11y(-y + 1) + 1(-y + 1) = 0
⇒ (-y + 1)(11y + 1) = 0 ⇒ y = 1, \(\frac{-1}{11}\)
-11y2 + 10y + 1 ≥ 0
∴ y2 coeff is be, but the exp is ≥ 0 from (1)
⇒ \(\frac{-1}{11}\) ≤ y ≤ 1 ⇒ y lies between 1 and \(\frac{-1}{11}\)

Question 9.
Theorem : The roots of ax2 + bx + c = 0 are
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 29
(Mar. ’02)
Proof:
Given quadratic equation is ax2 + bx + c = 0
⇒ 4a(ax2 + bx + c) = 0
⇒ 4a2x2 + 4abx + 4ac = 0
⇒ (2ax)2 + 2(2ax) (b) + b2 – b2 + 4ac = 0
⇒ (2ax + b)2 = b2 – 4ac
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 30

Question 10.
Find the maximum value of the function \(\frac{x^{2}+14 x+9}{x^{2}+2 x+3}\) over R.
Solution:
Let y = \(\frac{x^{2}+14 x+9}{x^{2}+2 x+3}\)
⇒ yx2 + 2yx + 3y = x2 + 14x + 9
⇒ (y – 1)x2 + 2(y – 7)x + 3y – 9 = 0
Since x ∈ R, discriminant ≥ 0
⇒ [2(y – 7)]2 – 4(y – 1) (3y – 9) ≥ 0
⇒ 4[(y2 – 14y + 49) [(3y2 – 12y + 9)] ≥ 0
⇒ -2y2 – 2y + 40 ≥ 0
⇒ y2 + y – 20 ≤ 0
⇒ (y + 5) (y -4) ≤ 0
⇒ -5 ≤ y ≤ 4
⇒ y ∈ [-5, 4]
⇒ Maximum value of y = 4
∴ Maximum value of the function
\(\frac{x^{2}+14 x+9}{x^{2}+2 x+3}\) over R is 4.

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 11.
If x2 – 6x + 5 = 0 and x2 – 12x + p = 0 have a common root, then find p. (TS Mar. ’17)
Solution:
Given x2 – 6x + 5 = 0, x2 – 12x + p = 0 have a common root.
If α is the common root then
α2 -6α + 5 = 0, α2 – 12α + p = 0
α2 – 6α + 5 = 0 ⇒ (α – 1) (α – 5) = 0
⇒ α = 1 or 5
If α = 1 then α2 – 12α + p = 0
⇒ 1 – 12 + p = 0 ⇒ p = 11
If α = 5 then α2 – 12α + p = 0
⇒ 25 – 60 + p = 0 ⇒ p = 35
∴ p = 11 or 35

Question 12.
If x1, x2 are the roots of the quadratic equation ax2 + bx + c = 0 and c ≠ 0, find the value of (ax1 + b)-2 + (ax2 + b)-2 in terms of a, b, c. (TS Mar. ’17)
Solution:
x1, x2 are the roots of the equation
ax2 + bx + c = 0
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 31
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 32

Question 13.
Prove that \(\frac{1}{3 x+1}\) + \(\frac{1}{x+1}\) – \(\frac{1}{(3 x+1)(x+1)}\) does not lie between 1 and 4, if x is real. (AP & TS Mar. ’16, AP Mar. 15, ’11) (AP Mar. ‘17)
Solution:
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 33
⇒ 3yx2 + 4yx + y = 4x + 1
⇒ 3yx2 + (4y – 4) x + (y – 1) = 0
x ∈ R ⇒ (4y – 4)2 – 4(3y)(y – 1) ≥ 0
⇒ 16y2 + 16 – 32y – 12y2 + 12y ≥ 0
⇒ 4y2 – 20y + 16 ≥ 0
4y2 – 20y + 16 = 0
⇒ y2 – 5y + 4 = 0
⇒ (y – 1)(y – 4) = 0
⇒ y = 1, 4
⇒ 4y2 – 20y + 16 ≥ 0.
⇒ y ≤ 1 or y ≥ 4
⇒ y does not lie between 1 and 4
Since y2 coeff is the and exp ≥ 0.

Question 14.
Solve the following equations: (T.S Mar. ‘15)
2x4 + x3 – 11x2 + x + 2 = 0
Solution:
Dividing by x2
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 34
Substituting in (1)
2(a2 – 2) + a – 11 = 0
⇒ 2a2 – 4 + a – 11 = 0
⇒ 2a2 + a – 15 = 0
⇒ (a + 3) (2a – 5) = 0
⇒ a + 3 = 0 or 2a – 5 = 0
a = -3 or 2a = 5 a = \(\frac{5}{2}\)

Case(i) : a = -3
x + \(\frac{1}{x}\) = -3
x2 + 1 = -3
x2 + 3x + 1 = 0
x = \(\frac{-3 \pm \sqrt{9-4}}{2}\) = \(\frac{-3 \pm \sqrt{5}}{2}\)

Case (ii) : a = \(\frac{5}{2}\)
x + \(\frac{1}{x}\) = \(\frac{5}{2}\)
⇒ \(\frac{x^{2}+1}{x}\) = \(\frac{5}{2}\)
⇒ 2x2 + 2 = 5x
⇒ 2x2 – 5x + 2 = 0
⇒ (2x – 1) (x – 2) = 0
⇒ 2x – 1 = 0 or x – 2 = 0
⇒ x = \(\frac{1}{2}\), 2
∴ The roots are \(\frac{1}{2}\), 2, \(\frac{-3 \pm \sqrt{5}}{2}\)

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 15.
For what values of x, the following expressions are positive? (May ’11)
i) x2 – 5x + 6
Solution:
x2 – 5x + 6 = (x – 2) (x – 3)
Roots of x2 – 5x + 6 = 0 are 2, 3 which are real.
The expression x2 – 5x + 6 is positive if x < 2 or x > 3, ∴ a = 1 > 0.

ii) 3x2 + 4x + 4
Solution:
Here a = 3, b = 4, c = 4,
Δ = b2 – 4ac
= 16 – 48 = -32 < 0
∴ 3x2 + 4x + 4 is positive ∀ x ∈ R,
∵ a = 3 >0 and Δ < 0
Hint: ax2 + bx + c and ‘a’ have same sign ∀ x ∈ R, if Δ < 0

iii) 4x – 5x2 + 2
Solution:
Roots of 4x – 5x2 + 2 = 0 are
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 35

iv) x2 – 5x + 14
Solution:
Here a = 1, b = -5, c = 14,
Δ = b2 – 4ac
= 25 – 56 = -31 < 0
∴ Δ < 0 ∵ a = 1 > 0 and Δ < 0
⇒ x2 – 5x + 14 is positive ∀ x ∈ R.

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 16.
Determine the range of the \(\frac{x^{2}+x+1}{x^{2}-x+1}\) expressions. (Mar ’04)
Solution:
Let y = \(\frac{x^{2}+x+1}{x^{2}-x+1}\)
⇒ x2y – xy + y = x2 + x + 1
⇒ x2y – xy + y – x2 – x – 1 = 0
⇒ x2(y – 1) – x(y + 1) + (y – 1) = 0
x is real ⇒ b2 – 4ac ≥ 0
⇒ (y + 1)2 – 4(y – 1)2 ≥ 0
⇒ (y + 1)2 – (2y – 2)2 ≥ 0
⇒ (y + 1 + 2y – 2)(y + 1 – 2y + 2) ≥ 0
⇒ (3y – 1)(-y + 3) ≥ 0
⇒ -(3y – 1) (y – 3) ≥ 0
a = coeff. of y2 = -3 < 0., But
The expression ≥ 0
⇒ y lies between \(\frac{1}{3}\) and 3
∴ The range of \(\frac{x^{2}+x+1}{x^{2}-x+1}\) is \(\left[\frac{1}{3}, 3\right]\)

Question 17.
Theorem : Let α, β be the real roots of ax2 + bx + c = 0 and α < β. Then
i) x ∈ R, α < x < β ⇒ ax2 + bx + c and ’a’ have opposite signs.
ii) x ∈ R, x < α or x > β ⇒ ax2 + bx + c and ‘a’ have the same sign. (Apr. ’96, ’93)
Proof:
α, β are the roots of ax2 + bx + c = 0
⇒ ax2 + bx + c = a(x – α) (x – β)
⇒ \(\frac{a x^{2}+b x+c}{a}\) = (x – α) (x – β)

i) Suppose x ∈ R, α < x < β
α < x < β ⇒ x – α > 0, x – β < 0
⇒ (x – α) (x – β) < 0
⇒ ax2 + bx + c, a have opposite signs.

ii) Suppose x ∈ R, x < α
x < α < 13
⇒ x – α < 0, x – β < 0 ⇒ (x – α) (x – β) > 0
⇒ \(\frac{a x^{2}+b x+c}{a}\) > 0
⇒ ax2 + bx + c and a have the same sign.
Suppose x ∈ R, x > β
x > β > α
⇒ x – α > 0, x – β > 0
⇒ (x – α)(x – β) > 0
⇒ \(\frac{a x^{2}+b x+c}{a}\) > 0
⇒ ax2 + bx + c and a have the same sign,
∴ x ∈ R, x < α or x > β
⇒ ax2 + bx + c and a have the same sign.

Question 18.
Theorem: Let f(x) = ax2 + bx + c be a quadratic function. (Apr. ‘01)
i) If a > 0 then f(x) has minimum value at x = \(\frac{-b}{2 a}\) and the minimum value = \(\frac{4 a c-b^{2}}{4 a}\)
ii) If a < 0 then f(x) has maximum value at x = \(\frac{-b}{2 a}\) and the maximum value \(\frac{4 a c-b^{2}}{4 a}\)
Proof:
ax2 + bx + c =
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 36
≤ \(\frac{4 a c-b^{2}}{4 a}\),
when a < 0
∴ If a < 0, then \(\frac{4 a c-b^{2}}{4 a}\) is the maximum fór f when x = \(\frac{-b}{2 a}\)
Second Proof : f(x) = ax2 + bx + c
⇒ f'(x) = 2ax + b
⇒ f”(x) = 2a
If f'(x) = 0, then 2ax + b = 0 and hence x = \(-\frac{b}{2 a}\)
If a > 0, then f”(x) > 0 and hence ‘f’ has minimum value at x = \(-\frac{b}{2 a}\).
Minimum of
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 37
If a < 0,
then f”(x) < 0 and hence ‘f’ has maximum value at x = \(-\frac{b}{2 a}\) maximum of
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 38

Question 19.
Theorem : The roots of ax2 + bx + c = 0 are \(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\).
Proof:
Given quadratic equation is ax2 + bx + c = 0
⇒ 4a (ax2 + bx + c) = 0
⇒ 4a2x2 + 4abx + 4ac = 0
⇒ (2ax)2 + 2(2ax) (b) + b2 – b2 + 4ac = 0
⇒ (2ax + b)2 = b2 – 4ac
⇒ 2ax + b = ±\(\sqrt{b^{2}-4 a c}\)
⇒ 2ax = -b ± \(\sqrt{b^{2}-4 a c}\)
⇒ x = \(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)
The roots of ax2 + bx + c = 0 are
\(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 20.
Theorem : Let a, b, c ∈ R and a ≠ 0. Then the roots of ax2 + bx + c = 0 are non-real complex numbers if and only if ax2 + bx + c and a have the same sign for all x ∈ R.
Proof :
The condition for the equation
ax2 + bx + c = o to have non-real complex roots is b2 – 4ac < 0, i.e., 4ac – b2 > 0.
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 1
Hence 4ac – b2 > 0, so that b2 – 4ac < 0. Thus b2 – 4ac < 0 if and only if ax2 + bx + c and a have the same sign for all real x.

Question 21.
Theorem: If the roots of ax2 + bx + c = 0 are real and equal to α = \(\frac{-b}{2 a}\); then for α ≠ x ∈ R, ax2 + bx + c and ‘a’ have the same sign.
Proof:
The roots are equal ⇒ b2 – 4ac = 0
⇒ 4ac – b2 = 0
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 2
∴ For α ≠ x ∈ R, ax2 + bx + c and a have the same sign.

Question 22.
Theorem : Let α, β be the real roots of ax2 + bx + c = 0 and α < β. Then
i) x ∈ R, α < x < 13 ⇒ ax2 + bx + c and ’a’ have opposite signs.
ii) x ∈ R, x < α or x > β ⇒ ax2 + bx + c and ‘a’ have the same sign.
Proof.
α, β are the roots of ax2 + bx + c = 0
⇒ ax2 + bx + c = a(x – α)(x – β)
⇒ \(\frac{a x^{2}+b x+c}{a}\) = (x – α)(x – β)

i) Suppose x ∈ R, α < x < β
α 0, x – β < 0
⇒ (x – α)(x – β) < 0 ⇒ \(\frac{a x^{2}+b x+c}{a}\) < 0
⇒ ax2 + bx + c, a have opposite signs

ii) Suppose x ∈ R, x < α
x < α < β ⇒ x – α < 0, x – β < 0 ⇒ (x – α) (x – β) > 0 ⇒ \(\frac{a x^{2}+b x+c}{a}\) > 0
⇒ ax2 + bx + c and a have the same sign.
Suppose x ∈ R, x > 3
x > β > α ⇒ x – α > 0, x – β > 0
⇒ (x – α) (x – β) > 0
⇒ \(\frac{a x^{2}+b x+c}{a}\) > 0
⇒ ax2 + bx + c and a have the same sign,
x ∈ R, x < α or x > β
⇒ ax2 + bx + c and a have the same sign

Question 23.
Theorem : Let f(x) = ax2 + bx+ c be a quadratic function.
i) If a > 0 then f(x) has minimum value at x = \(\frac{-\mathbf{b}}{2 a}\) and the minimum value = \(\frac{4 a c-b^{2}}{4 a}\)
ii) If a < 0 then f(x) has maximum value at x = \(\frac{-\mathbf{b}}{2 a}\) and the maximum value = \(\frac{4 a c-b^{2}}{4 a}\) (Apr. ’01)
Proof.
ax2 + bx+ c =
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 3
Second Proof: f(x) = ax2 + bx + c
⇒ f'(x) = 2ax + b ⇒ f”(x) = 2a
If f'(x) = 0, then 2ax + b = 0 and hence x = \(-\frac{b}{2 a}\)
If a > 0, then f”(x) > 0 and hence ‘f’ has minimum value at x = \(-\frac{b}{2 a}\)
Minimum of
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 4
If a < 0 then f”(x) < 0 and hence ‘f’ has maximum value at x = –\(\frac{b}{2 a}\)
maximum of
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 5

Question 24.
Theorem : A necessary and sufficient condition for the quadratic equations
a1x2 + b1x + c1 = 0 and a2x2 + b2x + c2 = 0 to have a common root is (c1a2 – c2a1)2 = (a1b2 – a2b1) (b1c2 – b2c1).
Proof:
Necessity
Let α be a common root of the given equations.
Then a1α2 + b1α + c1 = 0 ——(1)
a2α2 + b2α + c2 = 0 —— (2)
On multiplying euqation (1) by a2, equation (2) by a1 and then subtracting the latter from the former, we get
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 6
On multiplying euqation (1) by b2, equation (2) by b1 and then subtracting the latter from the former, we get
α2 (a1b2 – a2b1) = b1c2 – b2c1 —— (4)
On squaring both sides of equation (3) and using (4) we obtain
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 7
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 8
Therefore the given equations have the same roots.

Case (ii): a1b2 – a2b1 ≠ 0
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 9
Similarly we can prove that a2α2 + b2α + c2 = 0
Thus α is a common root of the given equations.

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 25.
Find the roots of the equation 3x2 + 2x – 5 = 0.
Solution:
The roots of the quadratic equation
ax2 + bx + c = 0 are \(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)
Here a = 3, b = 2 and c = -5.
Therefore the roots of the given equation are
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 10
Hence 1 and –[/latex]\frac{5}{3}[/latex] are the roots of the given equation.
Another method
We can also obtain these roots in thè following way.
3x2 + 2x – 5 = 3x2 + 5x – 3x – 5
= x(3x + 5) -1 (3x + 5)
= (x – 1) (3x + 5)
= 3(x – 1) \(\left(x+\frac{5}{3}\right)\)
Since 1 and –[/latex]\frac{5}{3}[/latex] are the zeros of 3x2 + 2x – 5, they are the roots of 3x2 + 2x – 5 = 0.

Question 26.
Find the roots of the equation 4x2 – 4x + 17 = 3x2 – 10x – 17.
Solution:
Given equation can be rewritten as x2 + 6x + 34 = 0. The roots of the quadratic equation
ax2 + bx + c = 0 are \(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)
Here a = 1, b = 6 and c = 34
Therefore the roots of the given equation are
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 11
Hence the roots of the given equation are -3 + 5i and -3 – 5i

Question 27.
Find the roots of the equation
\(\sqrt{3}\)x2 + 10x – 8\(\sqrt{3}\) = 0.
Solution:
Here a = \(\sqrt{3}\), b = 10, c = -8\(\sqrt{3}\)
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 12

Question 28.
Find the nature of the roots of 4x2 – 20x + 25 = 0
Solution:
Here a =4, b = -20, c = 25
Hence Δ = b2 – 4ac
= (-20)2 – 4(4) (25) = 0
Since Δ is zero and a, b, c are real, the roots of the given equation are real and equal.

Question 29.
Find the nature of the roots of 3x2 + 7x + 2 = 0
Solution:
Here a = 3, b = 7, c = 2
Hence Δ = b2 – 4ac
= 49 – 4(3) (2)
= 49 – 24
= 25 = (5)2 > 0
Since a, b, c are rational numbers and Δ = 52 is a perfect square and positive, the roots of the given equation are rational and unequal.

Question 30.
For what values of m, the equation x2 – 2(1 + 3m)x + 7(3 + 2m) = 0 will have equal roots?
Solution:
The given equation will have equal roots iff its discriminant is 0.
Here Δ = [(-2(1 + 3m)]2 – 4(1) [7 + (3 + 2m)]
= 4(1 + 9m2 + 6m) – 28(3 + 28m)
= 9m2 – 8m – 20
= (m – 2)(9m + 10)
Hence Δ = 0 ⇔ m = 2, \(\frac{-10}{9} .\)

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 31.
If α and β are the roots of ax2 + bx + c = 0, find the value of α2 + β2 and α3 + β3 in terms of a, b, c.
Solution:
α, β are the roots of ax2 + bx + c = 0
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 13

Question 32.
Show that the roots of the equation x2 – 2px + p2 – q2 + 2qr – r2 = 0 are rational, given that p, q, r are rational.
Solution:
Here a = 1, b = -2p, c = p2 – q2 + 2qr – r2
∆ = b2 – 4ac
= (-2p)2 – 4(1) (p2 – q2 + 2qr – r2)
= 4p2 – 4p2 + 4q2 + 8qr + 4r2
= 4(q – r)2.
∵ p, q, r are rational, the coefficient of the given equation are rational and is a square of a rational number 2(q – r).
∴ The roots of the given equation are rational.

Question 33.
Form a quadratic equation whose roots are 2\(\sqrt{3}\) – 5 and -2\(\sqrt{3}\) – 5.
Solution:
Let α = 2\(\sqrt{3}\) – 5 and β = -2\(\sqrt{3}\) – 5
Then α + β = (2\(\sqrt{3}\) – 5) + (-2\(\sqrt{3}\) – 5) = -10
and αβ = (2\(\sqrt{3}\) – 5) + (-2\(\sqrt{5}\) – 5)
= (-5)2 – (-2\(\sqrt{3}\))2
= 25 – 4 × 3
= 13
The required quadratic equation is
x2 – (α + β)x + αβ = 0
⇒ x2 – (-10)x + 13 = 0
⇒ x2 + 10x + 13 = 0

Question 34.
Find the quadratic equation, the sum of whose roots is 1 and the sum of squares of the roots is 13.
Solution:
Let α, β be the roots of a required quadratic equation.
Then α + β = 1 and α2 + β2 = 13
Now αβ = \(\frac{1}{2}\)[(α + β)2 – (α2 + β2)]
= \(\frac{1}{2}\)[(1)2 – (13)]
Therefore x2 – (α + β)x + αβ = 0
⇒ x2 – (1)x + (-6) = 0
⇒ x2 – x – 6 = 0

Question 35.
Let α and β be the roots of the quadratic equation ax2 + bx + c = 0, c ≠ 0, then form the quadratic equation whose roots are \(\frac{1-\alpha}{\alpha}\) and \(\frac{1-\beta}{\beta}\).
Solution:
From the given equation
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 14
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 15

Question 36.
Solve x2/3 + x1/3 – 2 = 0
Solution:
(x1/3)2 + (x1/3) – 2 = 0
Let x1/3 = a, a2 + a – 2 = 0
⇒ (a +2)(a – 1) = 0 ⇒ a = 1, -2
Now, x1/3 = 1 ⇒ x = (1)3 = 1
x1/3 = -2 ⇒ x = (-2)3 = -8
∴ roots are 1, -8.

Question 37.
Solve 71 + x + 71 – x = 50 for real x.
Solution:
The given equation can be written as,
7.7x + \(\frac{7}{7^{x}}\) – 50 = 0
Let 7x = a
7a + \(\frac{7}{a}\) – 50 = 0
⇒ 7a2 + 7 – 50a = 0
⇒ 7a2 – 49a – a + 7 = 0
⇒ 7a(a – 7) – 1(a – 7) = 0
⇒ (a – 7)(7a – 1) = 0
∴ a = 7, \(\frac{1}{7}\)
Now, if a = 7 then 7x = 71 ⇒ x = 1
a = \(\frac{1}{7}\) then 7x = \(\frac{1}{7}\) = 7-1
x = -1
∴ x = -1, 1

Question 38.
Solve
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 16
Solution:
On taking \(\sqrt{\frac{x}{1-x}}\) = a
a + \(\frac{1}{a}\) = \(\frac{13}{6}\)
⇒ \(\frac{a^{2}+1}{a}\) = \(\frac{13}{6}\)
⇒ \(\frac{a^{2}+1}{a}\) = \(\frac{13}{6}\)
⇒ 6a2 + 6 = 13a
⇒ 6a2 – 13a + 6 = 0
⇒ 6a2 – 9a – 4a + 6 = 0
⇒ 3a(2a – 3) – 2(2a – 3) = 0
⇒ (2a – 3)(3a – 2) = 0
a = \(\frac{3}{2}\), a = \(\frac{2}{3}\)
If a = \(\frac{3}{2}\) then \(\sqrt{\frac{x}{1-x}}\) = \(\frac{3}{2}\)
⇒ \(\frac{x}{1-x}\) = \(\frac{9}{4}\)
⇒ 4x = 9 – 9x
⇒ 13x = 9
⇒ x = \(\frac{4}{13}\)
∴ x = \(\frac{9}{13}\), \(\frac{4}{13}\)

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 39.
Find all number which exceed their square root by 12.
Solution:
Let the required number be ‘x’
given, x = \(\sqrt{x}\) + 12
⇒ x – 12= \(\sqrt{x}\)
Squaring on both sides
(x – 12)2 = (\(\sqrt{x}\))2
⇒ x2 – 24x + 144 = x
⇒ x2 – 25x + 144 = 0
⇒ (x – 9)(x – 16) = 0
⇒ x = 9, 16
But x = 9 does not satisfy the given condition
x = 16
∴ The required numbér = 16.

Question 40.
If x2 + 4ax + 3 = 0 and 2x2 + 3ax – 9 = 0 have a common root, then find the values
of a and the common root.
Solution:
The quadratic equations
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 17
Substitute in the above equation
[(3) (2) – (-9) (1)]2 = [(1) (3a) – (2) (4a)] [(4a) (-9) – (3a) (3)]
(15)2 = (-5a) (-45a)
⇒ 225 = 225a2 ⇒ a2 = 1 ⇒ a = ±1

Case (i) : If a = 1, the given equations become x2 + 4x + 3 = 0 and 2x2 + 3x – 9 = 0
⇒ (x + 1)(x + 3) = 0 and (2x + 3)(x + 3) = 0
⇒ x = 3, -1 and -3, \(\frac{3}{2}\)
In this case, the common root of the given equations is -3

Case (ii) : If a = -1, the given equations become x2 – 4x + 3 = 0 and 2x2 – 3x – 9 = 0
⇒ (x – 1) (x – 3) = 0 and (2x + 3) (x – 3) = 0
⇒ x = 1, 3 and x = 3, –\(\frac{3}{2}\)
In this case, the common root of the given equation is 3.

Question 41.
Prove that there is unique pair of consecutive positive odd integers such that the sum of their squares is. 290 and find it.
Solution:
The difference of two consecutive odd integers is 2.
So, we have to prove that there is a unique positive odd integer ‘x’ such that
x2 + (x + 2)2 = 290 —– (1)
x2 + (x + 2)2 = 290
⇒ x2 + x2 + 4x + 4 = 290
⇒ 2x2 + 4x – 286 = 0
⇒ x2 + 2x – 143 = 0
⇒ (x + 13) (x – 11) = 0
⇒ x = -13, 11
Hence 11 is the only positive odd integer satisfying equation (1).
∴ 11, 13 is the unique pair of integers which satisfies the given condition.

Question 42.
The cost of a piece of cable wire is Rs. 35/-, If the length of the piece of wire is 4 meters more and each meter costs, Rs. 1/— less, the cost would remain unchanged. What is the length of the wire?
Solution:
Let the length of the piece of the wire be ‘l’ meters and the cost of each meter be Rs. x.
given lx. = 35 —— (1)
and (l + 4) (x – 1) = 35
⇒ lx – l + 4x – 4 = 35
⇒ 35 – l + 4x – 4 = 35
⇒ 4x = l + 4
⇒ x = \(\frac{l+4}{4}\)
Substitute x in (1), we get l[latex]\frac{l+4}{4}[/latex] = 35
⇒ l2 + 4l = 140
⇒ l2 + 4l – 140 = 0
⇒ l2 + 14l – 10l – 140 = 0
⇒ l(l + 14) – 10(l + 14) = 0
⇒ (l – 10)(l + 14) = 0
⇒ l = -14, 10
Since length cannot be negative, l = 10
∴ The length of the piece of wire is 10 meters.

Question 43.
One fourth of a herd of goats was seen in the forest. Twice the square root of the number in the herd had gone up the hill and the remaining 15 goats were on the bank of the river. Find the total number of goats.
Solution:
Let the number of goats in the herd be ‘x’.
The number of goats seen in the forest = \(\frac{x}{4}\)
The number of goats gone upto the hill = \(2 \sqrt{x}\)
The number of goats on the bank of a river = 15
∴ \(\frac{x}{4}\) + 2\(\sqrt{x}\) + 15 = x
⇒ x + 8\(\sqrt{x}\) + 60 = 4x
⇒ 3x – 8\(\sqrt{x}\) – 60 = 0
Put \(\sqrt{x}\) = y
⇒ 3y2 – 8y – 60 = 0
⇒ 3y2 – 18y + 10y – 60 = 0
⇒ 3y(y – 6) + 10(y – 6) = 0
⇒ (3y + 10)(y – 6) = 0
⇒ y = 6, –\(\frac{10}{3}\)
Since y cannot be negative, y = 6
⇒ \(\sqrt{x}\) = 36
∴ x = 36
∴ Total number of goats = 36

Question 44.
In a cricket match Anil took one wicket less than twice the number of wickets taken by Ravi. If the product of the
number of wickets taken by them is 15, find the number of wickets taken by each of them.
Solution:
Let the number of wickets taken by Ravi be ‘x’ and the number of wickets taken by Anil is 2x – 1.
Given x(2x – 1) = 15
⇒ 2x2 – x – 15 = 0
⇒ 2x2 – 6x + 5x – 15 = 0
⇒ 2x(x – 3) + 5(x – 15) = 0
⇒ (x – 3)(2x + 5) = 0
⇒ x = 3, –\(\frac{5}{2}\)
Since the number of wickets be integer,
x = 3 and 2x – 1 = 2(3) – 1 = 5
∴ The number of wickets taken by Anil and Ravi are 5 and 3 respectively.

Question 45.
Some points on a plane are marked and they are connected pairwise by line segments. If the total number of line
segments formed is 10, find the number of marked points on the plane.
Solution:
Let the number of points marked on the plane be ’x’.
The total number of line segments actually formed is
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 18
Given \(\frac{x(x-1)}{2}\) = 10
⇒ x2 – x = 20
⇒ x2 – x – 20 = 0
⇒ (x – 5)(x + 4) = 0
Since x cannot be negatives x = 5
∴ The number of points marked on the plane is 5.

Question 46.
Suppose that the quadratic equations ax2 + bx + c = 0 and bx2 + cx + a = 0 have a common root. Then show that a3 + b3 + c3 = 3abc.
Solution:
Let α be the common root of the equations
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 19

Question 47.
For what values of x1 the expression x2 – 5x – 14 is positive?
Solution:
Since x2 – 5x – 14 = (x + 2) (x – 7), the roots of the equation -2 and 7
Here the coefficient of x2 is positive.
Hence x2 – 5x – 14 is positive when x < -2 or x > 7.

Question 48.
For what values ofx. the expression -6x2 + 2x3 is negative?
Solution:
-6x2 + 2x – 3 = 0 can be written as 6x2 – 2x + 3 = 0
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 20
∴ The roots of -6x2 + 2x – 3 = 0 are non-real complex numbers.
Hence coefficient of x2 is -6, which is negative.
∴ -6x2 + 2x – 3 < 0 for all x ∈ R.

Question 49.
Find the value of x at which the following expressions have maximum or minimum.

i) x2 + 5x + 6
Solution:
Here a = 1 > 0, the expression has minimum value at x = \(\frac{-b}{2 a}\)
= \(\frac{-5}{2(1)}\)
= \(\frac{-5}{2}\)

ii) 2x – x2 + 7
Solution:
Here a = -1 < 0, the expression has maximum value at x
= \(\frac{-b}{2 a}\)
= \(\frac{-2}{2 x-1}\) = 1

Question 50.
Find the maximum or minimum value of the quadratic expression
(i) 2x – 7 – 5x2
(ii) 3x2 + 2x + 17 (Mar. ’14)
Solution:
i) Compare the given equation with ax2 + bx + c, we get
a = -5, b = 2, c = -7
Here a = -5 < 0, the given expression has maximum value at x = \(\frac{-b}{2 a}\) = \(\frac{-2}{2(-5)}\)
= \(\frac{1}{5}\)
and maximum value = \(\frac{4 a c-b^{2}}{4 a}\)
= \(\frac{4(-5) \cdot(-7)-(?)^{2}}{4(-5)}\)
= \(\frac{140-4}{-20}\) = \(\frac{-34}{5}\)

(ii) Compare 3x2 + 2x + 11 with
ax2 + bx + c, we get a = 3, b = 2, c = 11
∵ a = 3 > 0, the given expression has minimum value at
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 21

Question 51.
Find the changes in the sign of 4x – 5x2 + 2 for x ∈ R and find the extreme value.
Solution:
The roots of 4x – 5x2 + 2 = 0
⇒ 5x2 – 4x – 2 = 0
roots are = \(\frac{2 \pm \sqrt{14}}{5}\)
∴ \(\frac{2-\sqrt{14}}{5}\) < x < \(\frac{2+\sqrt{14}}{5}\) the sign of 4x – 5x2 + 2 is positive.
x < \(\frac{2-\sqrt{14}}{5}\) or x > \(\frac{2+\sqrt{14}}{5}\), the sign of 4x – 5x2 + 2 is negative.
Since a = -5 < 0, then maximum value = \(\frac{4 a c-b^{2}}{4 a}\)
= \(\frac{4(-5)(2)-(4)^{2}}{4(-5)}\)
= \(\frac{-56}{-20}\) = \(\frac{14}{5}\)
Hence extreme value = \(\frac{14}{5}\)

Inter 2nd Year Maths 2A Quadratic Expressions Important Questions

Question 52.
Find the solution set of x2 + x – 12 ≤ 0 by both algebraic and graphical methods.
Solution:
Algebraic Method : We have x2 + x – 12 = (x + 4) (x – 3).
Hence -4 and 3 are the roots of the equation x2 + x – 12 = 0.
Since the coefficient of x2 in the quadratic expression x2 + x – 12 = 0 is positive, x2 + x – 12 is negative if -4 < x < 3 and positive if either x < -4 or x > 3.
Hence x2 + x – 12 ≤ 0 ⇔ -4 ≤ x ≤ 3.
Therefore the solution set is
{x ∈ R : -4 ≤ x ≤ 3}.
Graphical Method: Let y = f(x) = x2 + x – 12.
The values of y at some selected values of s are given in the following table:
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 22
The graph of the function y = f(x) is drawn using the above tabulated values. This is shown in Fig.
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 23
Therefore the graph of y = f(x) we observe that
y = x2 – x – 12 < 0 if f -4 ≤ x ≤ 3.
Hence the solution set is {x ∈ R : -4 ≤ x ≤ 3}.

Question 53.
Find the set of values of x for which the inequalities x2 – 3x – 10 < 0, 10x – x2 – 16
> 0 hold simultaneously.
Solution:
∵ x2 – 3x – 10 < 0
⇒ x2 – 5x + 2x – 10 < 0
⇒ x(x – 5) + 2(x – 5) < 0
⇒ (x – 5)(x + 2) < 0
∴ x2 coeff. is the and expression is <0
⇒ x ∈ (-2, 5) ——- (1)
Now 10x – x2 – 16 > 0
⇒ x2 – 10x + 16 < 0
⇒ (x – 2) (x – 8) < 0
∴ x2 coeff is the ana expression is < 0
⇒ x ∈ (2, 8) ——- (2)
Hence x2 – 3x – 10 < 0 and 10x – x2 – 16 > 0
⇔ x ∈ (-2, 5) ∩ (2, 8)
∴ The solution set is {x/x ∈ R : 2 < x < 5}

Question 54.
Solve the inequation \(\sqrt{x+2}\) > \(\sqrt{8-x^{2}}\).
Solution:
When a, b ∈ R and a ≥ 0, b ≥ 0 then \(\sqrt{a}\) > \(\sqrt{b}\) ⇔ a > b ≥ 0
∴ \(\sqrt{x+2}\) = \(\sqrt{8-x^{2}}\)
⇔ x + 2 > 8 – x2 ≥ 0 and x > -2, |x| < 2\(\sqrt{2}\)
We have (x + 2) > 8 – x2
⇔ x2 + x – 6 > 0
⇔ (x + 3)(x – 2) > 0
⇔ x ∈ (-∞, -3)(2, ∞) .
We have 8 – x2 ≥ 0
⇔ x2 ≤ 8 ⇔ |x| < 2 \(\sqrt{2}\) ⇔ x ∈ [-2 \(\sqrt{2}\), 2 \(\sqrt{2}\)] Also x + 2 > 0 ⇔ x > -2
Hence x + 2 > 8 – x2 ≥ 0
⇔ x ∈ ((-∞, -3) ∪ (2, ∞)) ∩ [-2 \(\sqrt{2}\), 2 \(\sqrt{2}\)] and x > -2
⇔ x ∈ (2, 2 \(\sqrt{2}\))
∴ The solution set is [x ∈ R : -2 < x ≤ 2 \(\sqrt{2}\)]

Question 55.
Solve the equation
\(\sqrt{(x-3)(2-x)}\) < \(\sqrt{4 x^{2}+12 x+11}\).
Solution:
The given inequation is equivalent to the following two inequalities.
(x – 3)(2 – x) ≥ 0 and
(x – 3)(2 – x) < 4x2 + 12x + 11
(x – 3)(2 – x) ≥ 0 ⇔ (x – 2)(x – 3) ≤ 0
⇔ 2 ≤ x ≤ 3
-x2 + 5x – 6 < 4x2 + 12x + 11
⇔ 5x2 + 7x + 17 > 0
The discriminant = b2 – 4ac = 49 – 340 < 0 ⇒ x ∈ R : a = 5 > 0 and expressive is the
Hence the solution set of the given inequation is {x ∈ R : 2 ≤ x ≤ 3}

Question 56.
Solve the inequation
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 24
Solution:
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 25
⇔ either 6 + x – x2 = 0, 2x + 5 ≠ 0 and x + 4 ≠ 0 or 6 + x – x2 > 0
and \(\frac{1}{2 x+5}\) ≥ \(\frac{1}{x+4}\)
We have 6 + x – x2 = -(x2 – x – 6)
= -(x + 2) (x – 3)
Hence 6 + x + x2 = 0 ⇔ x = -2 or x = 3
2x + 5 = 0 ⇔ x = –\(\frac{5}{2}\)
x + 4 = 0 ⇔ x = -4
∴ 6 + x – 2x2 > 0 ⇔ -2 < x < 3 x ∈ (-2, 3), 2x + 5 > -4 + 5 = 1 > 0 and x + 4 > -2 + 4 = 2 > 0
x + 4 > -2 + 4 = 2 > 0
x ∈ (-2, 3), \(\frac{1}{2 x+5}\) ≥ \(\frac{1}{x+4}\)
⇔ 2x + 5 ≤ x + 4,
2x + 5 ≤ x + 4 ⇔ x ≤ 1
Hence 6 + x – x2 > 0 and \(\frac{1}{2 x+5}\) ≥ \(\frac{1}{x+4}\)
⇔ -2 < x ≤ -1
∴ The solution set is {-2, 3} ∪ (-2, -1)
= [-2, -1] ∪ {3}

Question 57.
Find the maximum value of the function
\(\frac{x^{2}+14 x+9}{x^{2}+2 x+3}\) over R. (May ’05)
Solution:
Let y = \(\frac{x^{2}+14 x+9}{x^{2}+2 x+3}\)
⇒ yx2 + 2yx + 3y = x2 + 14x + 9
⇒ (y – 1)x2 + 2(y – 7)x + 3y – 9 = 0
Since x ∈ R, discriminant ≥ 0
⇒ [2(y – 7)2] – 4(y – 1) (3y – 9) ≥ 0
⇒ 4[(y2 – 14y + 49) [(3y2 – 12y + 9)] ≥ 0
⇒ -2y2 – 2y + 40 ≥ 0
⇒ y2 + y – 20 ≤ 0
⇒ (y + 5) (y – 4) ≤ 0
⇒ -5 ≤ y ≤ 4
⇒ y ∈ [-5, 4]
∴ Maximum value of y = 4
∴ Maximum value of the function
\(\frac{x^{2}+14 x+9}{x^{2}+2 x+3}\) over R is 4.

Question 58.
Show that none of the values of the function over \(\frac{x^{2}+34 x-71}{x^{2}+2 x-7}\) over R lies between 5 and 9. (Mar. 2005)
Solution:
Let y = \(\frac{x^{2}+34 x-7}{x^{2}+2 x-7}\)
⇒ x2 + 2x – 7 = x2 + 34x – 71
⇒ (y – 1)x2 + 2(y – 17)x + (-7y + 71) = 0
Since x ∈ R, discriminant ≥ 0
⇒ [2(y – 17)]2 – 4(y – 1)(-7y + 71)] ≥ 0
⇒ 4[(y2 – 34y + 289) – (-7y2 + 78y – 71)] ≥ 0
⇒ 8y2 – 112y + 360 ≥ 0
⇒ y2 – 14y + 45 ≥ 0
⇒ (y – 5) (y – 9) ≥ 0
⇒ y ≤ 5 or y ≥ 9
⇒ y does not lies between 5 and 9, since expression is ≥ 0 and y2 coeff is the
∴ None of the values of the function
\(\frac{x^{2}+34 x-7}{x^{2}+2 x-7}\) over R lies between 5 and 9.

Question 59.
Solve the inequation
\(\sqrt{x^{2}-3 x-10}\) > (8 – x)
Solution:
(i) \(\sqrt{x^{2}-3 x-10}\) > (8 – x)
⇒ x2 – 3x – 10 ≥ 0 and (i) (8 – x < 0)
or (ii) x2 – 3x – 10 > (8 – x)2 and (8 – x ≥ 0)
Now x2 – 3x – 10 = (x – 5) (x + 2)
Hence x2 – 3x – 10 ≥ 0
⇒ x ∈ (-∞, -2] ∪ [5, ∞)
8 – x < 0 ⇒ x ∈ (8, ∞)
∴ x2 – 3x – 10 ≥ 0 and 8 – x < 0
⇔ x ∈ (-∞, -2] ∪ [5, ∞) and x ∈ (8, ∞)
⇔ x ∈ (8, ∞)

(ii) x2 – 3x – 10 > (8 – x)2
⇔ x2 – 3x – 10 > 64 + x2 – 16x
⇔ 13x > 74
Inter 2nd Year Maths 2A Quadratic Expressions Important Questions 26

Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Students get through Maths 2A Important Questions Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 1.
Find the value of (1 – i)(Mar. ’07)
Solution:
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 1

Question 2.
If x = cis θ, then find the value of [x6 + \(\frac{1}{x^{6}}\)]
Solution:
∵ x = cos θ + i sin θ
⇒ x6 = (cos θ + i sin θ)6
= cos 6θ + i sin 6θ
⇒ \(\frac{1}{x^{6}}\) = cos 6θ – i sin 6θ
∴ x6 + \(\frac{1}{x^{6}}\) = 2 cos 6θ

Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 3.
If A, B, C are angles of a triangle such that x = cis A, y = cis B, z = cis C, then find the value of XYZ. (AP Mar. ‘16, ’15)
Solution:
∴ A, B, C are angles of a triangle
⇒ A + B + C = 180° ——- (1)
x = cis A, y = cis B, Z = cis C
⇒ xyz = cis(A + B + C)
= cos(A + B + C) + i sin(A + B + C)
= cos(180°) + i sin (180°) .
= -1 + i(0) = -1
∴ xyz = -1

Question 4.
If 1, ω, ω2 are the cube roots of unity, then prove that \(\frac{1}{2+\omega}\) – \(\frac{1}{1+2 \omega}\) = \(\frac{1}{1+\omega}\)
Solution:
ω is a cube root of unity
1 + ω + ω2 = 0 and ω3 = 1
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 2
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 3

Question 5.
(2 – ω) (2 – ω2) (2 – ω10) (2 – w11) = 49. (TS Mar. ’17)
Solution:
∵ 1, ω, ω2 are the cube roots of unity,
ω3 = 1 and 1 + ω + ω2 = 0
2 – ω10 = 2 – ω9 . ω
= 2 – (ω3)3 . ω2
= 2 – (1)3 ω2 = 2 – ω2
(2 – ω)(2 – ω2) = 4 – 2ω – 2ω2 + ω3
= 4 – 2(ω + ω2) + 1
= 4 – 2(-1) + 1
= 4 + 2 + 1 = 7
∴ (2 – ω)(2 – ω2)(2 – ω10)(2 – ω11)
= (2 – ω) (2 – ω2) (2 – ω) (2 – ω2)
= ((2 – ω) (2 – ω2))2
= 72 = 49

Question 6.
If α, β are the roots of the equation x2 – 2x + 4 = 0 then for any n ∈ N show that αn + βn = 2n + 1 cos \(\left(\frac{n \pi}{3}\right)\) (Mar. ’14)
Solution:
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 4
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 5

Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 7.
Show that one value of
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 6
is -1.
Solution:
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 7
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 8
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 9

Question 8.
If n is a positive integer, show that (1 + i)n + (1 – i)n = 2\(\frac{n+2}{2}\) cos \(\left(\frac{\mathrm{n} \pi}{4}\right)\). (A.P) (Mar. ’15)
Solution:
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 10

Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 9.
If n is an integer then show that (1 + cos θ + i sin θ)n + (1 + cos θ – i sin θ)n = 2n + 1 cosn (θ/2) cos \(\left(\frac{n \theta}{2}\right)\) (May. ’11) (TS & AP Mar. ’17)
Solution:
L.H.S.
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 11

Question 10.
If cos α + cos β + cos γ = 0 = sin α + sin β + sin γ. Prove that cos2 α + cos2 β + cos2 γ = \(\frac{3}{2}\) = sin2 α + sin2 β + 2 γ. (AP. Mar. ’16; TS Mar. ’15, ‘13)
Solution:
Let x = cos α + i sin α
y = cos β + i sin β
z = cos γ + i sin γ
∴ x + y + z = (cos α + cos β + cos γ) + i(sin α + sin β + sin γ)
= 0 + i. 0 = 0
(x + y + z)2 = 0
⇒ x2 + y2 + z2 + 2(xy + yz + zx) = 0
x2 + y2 + z2 = -2(xy + yz + zx)
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 12
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 13
-i(sin α + sin β + sin γ) = 0 – i. 0 = 0
Substituting in (1)
x2 + y2 + z2 = 0.
(cos α + i sin α)2 + (cos β + i sin β)2 + (cos γ + i sinγ)2 = 0
(cos 2α + i sin 2α) + (cos β + i sin 2β) + (cos 2γ + i sin 2γ) = 0
(cos 2α + cos 2β + cos 2γ) + i (sin 2α + sin 2β + sin 2γ) = 0
Equating real parts
cos 2α + cos 2β + cos 2γ = 0
2cos2α – 1 + 2 cos2β – 1 + 2 cos2γ – 1 = 0
2 (cos2α + cos2β + cos2γ) = 3
cos2α + cos2β + cos2γ = \(\frac{3}{2}\)
2α + cos2β + cos2γ = \(\frac{3}{2}\)
⇒ (1 – sin2α) + (1 – sin2β) + (1 – sin2γ) = \(\frac{3}{2}\)
⇒ sin2α + sin2β + sin2γ = \(\frac{3}{2}\)
∴ cos2α + cos2β + cos2γ = \(\frac{3}{2}\)
= sin2α + sin2β + sin2β

Question 11.
If 1, ω, ω2 are the cube roots of unity prove that
i) (1 – ω + ω2)6 + (1 – ω2 + ω)6 = 128
= (1 – ω + ω2)7 + (1 + ω – ω2)7
ii) (a + b) (aω + bω2) (aω2 + bω) = a3 + b3
iii) x2 + 4x + 7 = 0 where x = ω – ω2 – 2.
Solution:
∵ 1, ω, ω2 are the cube roots of unity
⇒ 1 + ω + ω2 = 0 and ω3 = 1

i) (1 – ω + ω2)6 + (1 – ω2 + ω)6
= (-ω – ω)6 + (-ω2 – ω2)6
= (-2ω)6 + (-2ω2)6
= 266 + ω12)
= 26(1 + 1) = 26 × 2 = 27 = 128

Again (1 – ω + ω2)7 + (1 + ω – ω2)7
= (1 + ω2 – ω)7 + (1 + ω – ω2)7
= ( -ω – ω)7 + (-ω2 – ω2)7
= (-2ω)7 + (-2ω2)7
= (-2)77 + ω14)
= (-2)7 (ω + ω2)
= -(2)7 (-1)
= 27 = 128

ii) (a+b) (a]ω + bω2)(aω2 + bω) (AP) (Mar. ’17)
Solution:
= (a + b) [a2ω3 + abω4)4 + abω2 + b2ω3]
= (a + b) [a2 + ab(ω2 + ω4) + b2]
= (a + b) [a2 + ab(ω2 + ω) + b2]
= (a + b) (a2 – ab + b2) = a3 + b3

Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

iii) x = ω – ω2 – 2
⇒ x + 2 = ω – ω2
⇒ (x + 2)2 = ω2 + ω4 – 2ω3
⇒ x2 + 4x + 4 = ω2 + ω – 2
⇒ x2 + 4x + 4 = (-1) – 2 = -3
⇒ x2 + 4x + 7 = 0

Question 12.
Simplify \(\frac{(\cos \alpha+i \sin \alpha)^{4}}{(\sin \beta+i \cos \beta)^{8}}\)
Solution:
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 14
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 15
= (cos α + i sin α)4 (cos β – i sin β)-8 [i8 = (i2)4 = (-1)4 = 1]
= (cos 4α + i sin 4α) (cos 8β + i sin 8β)
= cos (4α + 8β) + i sin (4α + 8β)

Question 13.
If m, n are integers and x = cos α + i sin α, y = cos β + i sin β, then prove that
xm yn + \(\frac{1}{x^{m} y^{n}}\) = 2 cos (mα + nβ) and
xm yn – \(\frac{1}{x^{m} y^{n}}\) = 2i sin (mα + nβ).
Solution:
∵ x = cos α + i sin α, y = cos β + i sin β
⇒ xm = (cos α + i sin α)m = cos mα + i sin mα
yn = (cos β + i sin β)n = cos nβ + i sin nβ
∴ xm yn = (cos mα + i sin mα)(cos nβ + i sin nβ)
= cos (mα + nβ) + i sin (mα + nβ) ——— (1)
\(\frac{1}{x^{m} \cdot y^{n}}\) = cos (mα + nβ) – i sin (mα + nβ) —— (2)
By adding (1) and (2).
xmyn + \(\frac{1}{x^{m} y^{n}}\) = 2 cos (mα + nβ)
By subtracting (2) from (1)
xmyn – \(\frac{1}{x^{m} y^{n}}\) = 2 sin (mα + nβ)

Question 14.
If n is a positive integer, show that (1 + i)n + (1 – i)n = 2\(\frac{n+2}{2}\) cos \(\left(\frac{n \pi}{4}\right)\) (A.P.) (Mar. ‘15)
Solution:
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 16
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 17

Question 15.
If n is an integer then show that (1 + cos θ + i sin θ)n + (1 + cos θ – i sin θ)n = 2n + 1 + cosn (θ/2) cos \(\left(\frac{\mathrm{n} \theta}{2}\right)\). (May ’11)
Solution:
L.H.S.
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 18

Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 16.
If cos α + cos β + cos γ = 0 = sin α + sin β + sin γ, Prove that cos2 α + cos2 β + cos2 γ = \(\frac{3}{2}\) = sin2 α +
sin2 β + sin2 γ. (A.P. Mar. ‘16, T.S. Mar. ‘15, ’13)
Solution:
Let x = cos α + i sin α
y = cos β + i sin β
z = cos γ + i sin γ
∴ x + y + z = (cos α + cos β + cos γ) + i(sin α + sin β + sin γ)
= 0 + i.0 = 0
(x + y + z)2 = 0
⇒ x2 + y2 + z2 + 2(xy + yz + zx) = 0
x2 + y2 + z2 = -2(xy + yz + zx)
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 19
Similarly \(\frac{1}{y}\) = cos β – i sin β
\(\frac{1}{z}\) = cos γ – i sin γ
∴ \(\frac{1}{x}\) + \(\frac{1}{y}\) + \(\frac{1}{z}\) = (cos α + cos β + cos γ) – i(sin α + sin β + sin γ) = 0 – i. 0 = 0
Substituting in (1)
x2 + y2 + z2 = 0
(cos α + i sin β)2 + (cos β + i sin β)2 + (cos γ + i sin γ)2 = o
(cos 2α + i sin 2α) + (cos 2β + i sin 2β) + (cos 2γ + i sin 2γ) = 0
(cos 2α + cos 2β + cos 2γ) + i (sin 2α + sin 2β + sin 2γ) = 0
Equating real parts
cos 2α + cos 2β + cos 2γ = 0
2 cos2α – 1 + 2 cos2β – 1 + 2 cos2γ – 1 = 0
2 (cos2α + cos2β + cos2γ) = 3
cos2α + cos2β + cos2γ = \(\frac{3}{2}\)
∵ cos2α + cos2β + cos2γ = \(\frac{3}{2}\)
⇒ (1 – sin2α) + (1 – sin2β) + (1 – sin2γ) = \(\frac{3}{2}\)
⇒ sin2α + sin2β + sin2γ = 3 – \(\frac{3}{2}\) = \(\frac{3}{2}\)
∴ cos2 α + cos2β + cos2γ = \(\frac{3}{2}\)
= sin2 α + sin2β + sin2β

Question 17.
Find all the values of (\(\sqrt{3}\) + i)1/4.
Solution:
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 20

Question 18.
Find all the roots of the equation
x11 – x7 + x4 – 1 = 0.
Solution:
x11 – x7 + x4 – 1 = 0
⇒ x7(x4 – 1) + 1 (x4 – 1) = 0
⇒ (x4 – 1) (x7 + 1) = 0
Case(i) : x4 – 1 = 0
x4 = 1 = (cos o + i sin 0)
⇒ x4 = (cos 2kπ + i sin 2kπ)
∴ x = (cos 2kπ + i sin 2kπ)1/4
⇒ x = cis \(\left(\frac{2 k \pi}{4}\right)\) = cis \(\frac{\mathrm{k} \pi}{2}\), k = 0, 1, 2, 3.

Case (ii): x7 + 1 = 0
⇒ x7 = -1 = cos π + i sin π
⇒ x7 = cos (2kπ + n) + i sin (2kπ + π)
∴ x = [cos (2k + 1)π + i sin (2k + 1)π]1/7
⇒ x = cis(2k + 1)\(\frac{\pi}{7}\), k = 0, 1, 2, 3, 4, 5, 6
The values of x are
Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions 22

Inter 2nd Year Maths 2A De Moivre’s Theorem Important Questions

Question 19.
If 1, ω, ω2 are the cube roots of unity prove that (TS. Mar. ‘16)
i) (1 – ω + (ω2)6 + (1 – ω2 + ω)6 = 128
= (1 – ω + ω2)7 + (1 + ω – ω2)7
ii) (a + b)(aω + bω2)(aω2 + bω) = a3 + b3
iii) x2 + 4x + 7 = 0 where x = ω – ω2 – 2.
Solution:
∵ 1, ω, ω2 are the cube roots of unity
⇒ 1 + ω + ω2 = 0 and ω3 = 1
i) (1 – ω + ω2)6 + (1 – ω2 + ω)6
= (-ω – ω)6 +(-ω2 – ω2)6
= (-2ω)6 + (-2w2)6
= 266 + ω12)
= 26(1 + 1) = 26 × 2 = 27 = 128 .
Again (1 – ω + ω2)7 + (1 + ω – ω2)7
= (1 + ω2 – ω)7 + (1 + ω – ω2)7
= (- ω – ω) + (-ω2 – ω2)7
= (-2ω)7 + (-2ω2)7
= (-2)77 + ω14)
= (-2)7(ω + ω2)
= -(2)7 (-1)
= 27 = 128

ii) (a + b) (aω + bω2) (aω2 + bω)
= (a + b) [a2ω3 + abω4 + abω2 + b2ω3]
= (a + b) [a2 + ab(ω2 + ω4) + b2]
= (a + b) [a2 + ab(ω2 + ω) + b2]
= (a + b) (a2 – ab + b2) = a3 + b3

iii) x = ω – ω2 – 2
= x + 2 = ω – ω2
(x + 2)2 = ω2 – 2ω3
⇒ x2 +4x + 4 = ω2 + ω – 2
⇒ x2 + 4x + 4 = (-1) – 2 = -3.
⇒ x2 + 4x + 7 = 0

Question 20.
If α, β are the roots of the equation x2 + x + 1 = 0 then prove that α4 + β4 + α-1β-1 = 0
Solution:
Since α, β are the complex cube roots of unity.
We take α = ω, β = ω2
∴ α4 + β4 + α-1 + β-1
= ω4 + (ω2)4 + \(\frac{1}{\omega} \cdot \frac{1}{\omega^{2}}\)
= ω + ω2 + \(\frac{1}{\omega^{3}}\)
= (-1) + \(\frac{1}{1}\)
= -1 + 1 = 0
∴ α4 + β4 + α-1 + β-1 = 0

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Students get through Maths 2A Important Questions Inter 2nd Year Maths 2A Complex Numbers Important Questions which are most likely to be asked in the exam.

Intermediate 2nd Year Maths 2A Complex Numbers Important Questions

Question 1.
If z1 = -1, z2 = i then find Arg \(\left(\frac{z_{1}}{z_{2}}\right)\) (AP Mar. 17) (TS Mar.’ 16; May ‘11)
Solution:
Z1 = -1 = cos π + i sin π
⇒ Arg z1 = π
z2 = i = cos \(\frac{\pi}{2}\) + i sin \(\frac{\pi}{2}\)
⇒ Arg z2 = \(\frac{\pi}{2}\)
⇒ Arg \(\left(\frac{z_{1}}{z_{2}}\right)\) = Arg z1 – Arg z2 = π – \(\frac{\pi}{2}\).
= \(\frac{\pi}{2}\)

Question 2.
If z = 2 – 3i, show that z2 – 4z + 13 = 0. (Mar. ‘08)
Solution:
∴ z = 2 – 3i
⇒ z – 2 = -3i
⇒ (z – 2)2 = (-3i)2
⇒ z2 – 4z + 4 = 9i2
⇒ z2 – 4z + 4 = 9(-1)
⇒ z2 – 4z + 13 = 0

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Question 3.
Find the multiplicative inverse of 7 + 24i. (TS Mar. 16)
Solution:
Since (x + iy)\(\left[\frac{x-i y}{x^{2}+y^{2}}\right]\) = 1, it follows that the multiplicative inverse of (x + iy) is \(\frac{x-i y}{x^{2}+y^{2}}\)
Hence the multiplicative inverse of 7 + 24i is
Inter 2nd Year Maths 2A Complex Numbers Important Questions 6

Question 4.
Write the following complex numbers in the form A + iB. (2 – 3i) (3 + 4i)  (AP Mar. ’17)
Solution:
(2 – 3i) (3 + 4i) = 6 + 8i – 9i – 12i2
= 6 – i + 12
= 18 – i = 18 + i(-1)

Question 5.
Write the following complex numbers in the form A + iB. (1 + 2i)3 (TS Mar. ’17)
Solution:
(1 + 2i)3 = 1 + 3.i2.2i + 3.1. 4i2 + 8i3
= 1 + 6i – 12 – 8i
= -11 – 2i = (-11) + i(-2)

Question 6.
Write the conjugate of the following complex number \(\frac{5 i}{7+i}\) (AP Mar. ’15)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 7

Question 7.
Find a square root for the complex number 7 + 24i. (Mar. ‘14)
Solution:
7 + 24i
Inter 2nd Year Maths 2A Complex Numbers Important Questions 8
Inter 2nd Year Maths 2A Complex Numbers Important Questions 9

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Question 8.
Find a square root for the complex number 3 + 4i  (Mar. ’13)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 10

Question 9.
Express the following complex numbers in modulus amplitude form. 1 – i (AP Mar. 15)
Solution:
1 – i
Let 1 – i = r (cos θ + i sin θ)
Equating real and imaginary parts
r cos θ = 1
r sin θ = -1
⇒ θ lies in IV quadrant .
Squaring and adding
r2 (cos2 θ + sin2 θ) = 1 + 1 = 2
r2 = 2 ⇒ r = \(\sqrt{2}\)
tan θ = -1
⇒ θ = -π/4
Inter 2nd Year Maths 2A Complex Numbers Important Questions 11

Question 10.
Express the complex numbers in modulus — amplitude form 1 + i\(\sqrt{3}\) (TS Mar. ’17)
Solution:
1 + i\(\sqrt{3}\) = r (cos θ + i sin θ)
Equating real and imaginary parts
r cos θ = 1 —– (1)
r sin θ = \(\sqrt{3}\) —– (2)
θ lies in I quadrant
Squaring and adding (1) and (2)
r2 (cos2 θ – sin2 θ) = 1 + 3
r2 = 4 ⇒ r = 2
Dividing (2) by (1)
Inter 2nd Year Maths 2A Complex Numbers Important Questions 12

Question 11.
If the Arg \(\overline{\mathbf{z}}_{1}\) and Arg \(z_{2}\) are \(\frac{\pi}{5}\) and \(\frac{\pi}{3}\) respectively, find (Arg z1 + Arg z2) (AP Mar. ’16)
Solution:
Arg \(\overline{\mathbf{z}}_{1}\) = \(\frac{\pi}{5}\) ⇒ Arg z1 = – Arg z1 = – \(\frac{\pi}{5}\)
Arg z2 = \(\frac{\pi}{3}\)
∴ Arg z1 + Arg z2 = – \(\frac{\pi}{5}\) + \(\frac{\pi}{3}\)
= \(\frac{-3 \pi+5 \pi}{15}\) = \(\frac{2 \pi}{15}\)

Question 12.
If |z – 3 + i| = 4 determine the locus of z. (May. ’14)
Solution:
Let z = x + iy
Given |z – 3 + i| = 4
|x + iy – 3 + i| = 4
⇒ (x – 3) + i(y + 1) = 4
⇒ \(\sqrt{(x-3)^{2}+(y+1)^{2}}\) = 4
⇒ (x – 3)2 + (y + 1)2 = 16
⇒ x2 – 6x + 9 + y2 + 2y + 1 = 16
⇒ x2 + y2 – 6x + 2y – 6 = 0
∴ The locus õf z is x2 + y2 – 6x + 2y – 6 = 0

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Question 13.
The points P, Q denote the complex numbers z1, z2 in the Argand diagram. O is the origin. If z1z2 + z2z1 = 0, show that POQ = 90°. (Mar. ‘07)
Solution:
Let z1 = x1 + iy1 and z2 = x2 + iy2
Inter 2nd Year Maths 2A Complex Numbers Important Questions 13

Question 14.
Find the real and imaginary parts of the complex number \(\frac{a+i b}{a-i b}\). (TS Mar. 15)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 14

Question 15.
Write z = –\(\sqrt{7}\) + i\(\sqrt{21}\) in the polar form. (Mar. ’11)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 15
Since the given point lies in the second quadrant we look for a solution of tan θ = –\(\sqrt{3}\) that lies in \(\left[\frac{\pi}{2}, \pi\right]\), we find that θ = \(\frac{2 \pi}{3}\) is such a solution.
Inter 2nd Year Maths 2A Complex Numbers Important Questions 16

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Question 16.
z = x + iy and the point P represents z in the Argand plane and \(\left|\frac{z-a}{z+\bar{a}}\right|\) = 1, Re (a) ≠ 0, then find the locus of P. (TS Mar. ’17)
Solution:
Let z = x + iy and a = α + iβ
Inter 2nd Year Maths 2A Complex Numbers Important Questions 17
Locus of P is x = 0 i.e., Y – axis

Question 17.
If x + iy = \(\frac{1}{1+\cos \theta+i \sin \theta}\), show that 4x2 – 1 = 0 (AP Mar. ’16, TS Mar. ’17, ’15, ’06 )
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 18
Equating real parts on both sides, we have
x = \(\frac{1}{2}\)
2x = 1
⇒ 4x2 = 1
4x2 – 1 = 0

Question 18.
If (\(\sqrt{3}\) + 1)100 = 299 (a + ib), then show that a2 + b2 = 4. (AP Mar. ‘16)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 19
Inter 2nd Year Maths 2A Complex Numbers Important Questions 20

Question 19.
Show that the points in the Argand diagram represented by the complex numbers 2 + 2i, -2 – 2i, 2\(\sqrt{3}\) + 2\(\sqrt{3}\)i are the vertices of an equilateral triangle. (Mar ‘07)
Solution:
A (2, 2), B (-2, -2), C (-2\(\sqrt{3}\), 2\(\sqrt{3}\)) represents the given complex number in the Argand diagram.
Inter 2nd Year Maths 2A Complex Numbers Important Questions 21

Question 20.
Show that the points in the Argand plane represented by the complex numbers -2 + 7i, –\(\frac{3}{2}\), +\(\frac{1}{2}\)i, 4 – 3i, \(\frac{7}{2}\)(1 + i) are the vertices of a rhombus. (June 04) (TS Mar. ’16; AP Mar.’15 ’05; May ’05)
Solution:
A(-2, 7), B(-\(\frac{3}{2}\), \(\frac{1}{2}\)), C(4, -3), D(\(\frac{7}{2}\), \(\frac{7}{2}\)) represents the given complex numbers in the Argand diagram.
Inter 2nd Year Maths 2A Complex Numbers Important Questions 22
Inter 2nd Year Maths 2A Complex Numbers Important Questions 23
∴ AB2 = BC2 = CD2 = DA2
⇒ AB = BC = CD = DA
AC2 = (-2 – 4)2 + (7 + 3)2
= 36 +100 = 136
(BD)2 = (-\(\frac{3}{2}\) – \(\frac{7}{2}\))2 + (\(\frac{1}{2}\) – \(\frac{7}{2}\))2
= 25 + 9 = 34
AC ≠ BD
A, B, C, D are the vertices of a Rhombus.

Question 21.
Show that the points in the Argand diagram represented by the complex numbers z1, z2, z3 are collinear, if and only if there exists three real numbers p, q, r not all zero, satisfying pz1 + qz2 + rz3 = 0 and p + q + r = 0. (Mar. ‘07)
Solution:
pz1 + qz2 + rz3 = 0
⇔ rz3 = -pz1 – qz2
⇔ z3 = \(\frac{-p z_{1}-q z_{2}}{r}\) ∵ r ≠ 0
∵ p + q + r = 0
⇔ r = -p – q
⇔ z3 = \(-\frac{\left(p z_{1}+q z_{2}\right)}{-(p+q)}\)
⇔ z3 = \(\frac{p z_{1}+q z_{2}}{p+q}\)
⇔ z3 = \(\frac{p z_{1}+q z_{2}}{p+q}\)
⇔ z3 divides line segment joining z1, z2 in the ratio q : p
⇔ z1, z2, z3 are collinear

Question 22.
If the amplitude of \(\left(\frac{z-2}{z-6 i}\right) \frac{\pi}{2}\), find its locus. (Mar. ’06)
Solution:
Let z = (x + iy)
Inter 2nd Year Maths 2A Complex Numbers Important Questions 24
Hence a = 0 and b > 0
∴ x(x – 2) + y(y – 6) = 0
or x2 + y2 – 2x – 6y = 0.

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Question 23.
If x + iy = \(\frac{3}{2+\cos \theta+i \sin \theta}\) then show that x2 + y2 = 4x – 3 (TS Mar ’17)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 25
Equating real and imaginary parts on both sides, we have
Inter 2nd Year Maths 2A Complex Numbers Important Questions 26
Inter 2nd Year Maths 2A Complex Numbers Important Questions 27
Inter 2nd Year Maths 2A Complex Numbers Important Questions 28

Question 24.
Express \(\frac{4+2 i}{1-2 i}\) + \(\frac{3+4 i}{2+3 i}\) in the form a + ib, a ∈ R, b ∈ R.
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 29

Question 25.
Find the real and imaginary parts of the complex number \(\frac{a+i b}{a-i b}\) (TS Mar ’15)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 30

Question 26.
Express (1 – 3)3 (1 + i) in the form of a + ib.
Solution:
(1 – i)3 (1 + j) = (1 – j)2 (1 – i) (1 + j)
= (1 + i2 – 2i) (12 – i2)
= (1 – 1 – 2i) (1 + 1)
= 0 – 4i = 0 + i (-4)

Question 27.
Find the multiplicative inverse of 7 + 24i.  (TS. Mar. ’16 )
Solution:
Since (x + iy)\(\left[\frac{x-i y}{x^{2}+y^{2}}\right]\) = 1, it follows that the multiplicative inverse of Inter 2nd Year Maths 2A Complex Numbers Important Questions 31

Question 28.
Determine the locus of z, z ≠ 2i, such that Re\(\left(\frac{z-4}{z-2 i}\right)\) = 0
Solution:
Let z = x + iy
Inter 2nd Year Maths 2A Complex Numbers Important Questions 32
Hence the locus of the given point representing the complex number is the circle with (2, 1) as centre and \(\sqrt{5}\) units as radius, excluding the point (0, 2).

Question 29.
If 4x + i (3x – y) = 3 -6i where x and y are real numbers, then find the values of x and y.
Solution:
∵ 4x + i(3x – y) = 3 – 6i
Equating real and imaginary parts, we get 4x = 3 and 3x – y = -6
4x = 3 and 3x – y = -6
⇒ x = 3/4 and 3\(\left(\frac{3}{4}\right)\) – y = -6
\(\frac{9}{4}\) + 6 = y
⇒ y = \(\frac{33}{4}\)
∴ x = \(\frac{3}{4}\) and y = \(\frac{33}{4}\)

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Question 30.
If z = 2 – 3i, show that z2 – 4z + 13 = 0. (Mar. ’08)
Solution:
∴ z = 2 – 3i
⇒ z – 2 = – 3i
⇒ (z – 2)2 = (-3i)2
⇒ z2 – 4z + 4 = 9i2
⇒ z2 – 4z + 13 = 0
⇒ z2 – 4z + 4 = 9

Question 31.
Find the complex conjugate of (3 + 4i) (2 – 3i).
Solution:
The given complex number is
(3 + 4i) (2 – 3i) = 6 + 8i – 9i – 12i2
= 6 – i – 12(-1) = 18 + i
Its complex conjugate is 18 + i

Question 32.
Show that z1 = \(\frac{2+11 i}{25}\), z2 = \(\frac{-2+i}{(1-2 i)^{2}}\), are conjugate to each other.
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 33
Since, this complex number is the conjugate of \(\frac{2+11 i}{25}\), the two given complex numbers
are conjugate to each other.

Question 33.
Find the square root of (-5 + 12i).
Solution:
We have \(\sqrt{a+i b}\) =
Inter 2nd Year Maths 2A Complex Numbers Important Questions 34
In this example a = -5, b = 12
Inter 2nd Year Maths 2A Complex Numbers Important Questions 35

Question 34.
Write z = –\(\sqrt{7}\) + i\(\sqrt{21}\) in the polar form. (Mar ’11)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 36
Since the given point lies in the second quadrant we look for a solution of
tan θ = – \(\sqrt{3}\) that lies in [\(\frac{\pi}{2}\), π] we find that θ = \(\frac{2 \pi}{3}\) is such a solution.
∴ –\(\sqrt{7}\) + i\(\sqrt{21}\) = 2\(\sqrt{7}\) cis \(\frac{2 \pi}{3}\)
(or) 2\(\sqrt{7}\)(cos \(\frac{2 \pi}{3}\) + i sin \(\frac{2 \pi}{3}\))

Question 35.
Express -1 – i in polar form with principle value of the amplitude.
Solution:
Let -1 – i = r (cos θ + i sin θ), then
-1 = r cos θ, -1 = r sin θ, tan θ = 1 ——— (1)
∴ r2 = 2
⇒ r = ±\(\sqrt{2}\)
Since θ is positive, -π < θ < π, the value θ satisfying the equation (1) is
θ = -135° = \(\frac{-3 \pi}{4}\)
Inter 2nd Year Maths 2A Complex Numbers Important Questions 37

Question 36.
If the amplitude of \(\left(\frac{z-2}{z-6 i}\right) \frac{\pi}{2}\), find its locus.  (Mar. ’06)
Solution:
Inter 2nd Year Maths 2A Complex Numbers Important Questions 38
By hypothesis, amplitude of a + ib = \(\frac{\pi}{2}\)
So \(\frac{\pi}{2}\) = tan-1 \(\frac{b}{a}\)
Hence a = 0 and b > 0
∴ x(x – 2) + y(y – 6) = 0
or x2 + y2 – 2x – 6y = 0.

Question 37.
Show that the equation of any circle in the complex plane is of the form z\(\overline{\mathbf{z}}\) + b\(\overline{\mathbf{z}}\) + b\(\overline{\mathbf{z}}\) + c = 0, 1(b ∈ C, c ∈ R).
Solution:
Assume the general form of the equation of a circle in cartesian co-ordinates as
x2 + y2 + 2gx + 2fy + c = 0, (g, f ∈ R) —— (1)
To write this equation in the complex variable form, let (x, y) = z.
Then \(\frac{z+\bar{z}}{2}\) = x, \(\frac{z-\bar{z}}{2 i}\)
= y = \(\frac{-i(z-\bar{z})}{2}\)
∴ x2 + y2 = |z|2 = z\(\overline{\mathbf{z}}\)
Substituting these results in equation (1), we obtain
z\(\overline{\mathbf{z}}\) + g(z + \(\overline{\mathbf{z}}\)) + f(z – \(\overline{\mathbf{z}}\))(-i) + c = 0
i.e., z\(\overline{\mathbf{z}}\) + (g – if)z + (g + if)\(\overline{\mathbf{z}}\) + c = 0 ——-(2)
If (g + if) = b, then equation (2) can be written as z\(\overline{\mathbf{z}}\) + \(\overline{\mathbf{b}}\)z + b\(\overline{\mathbf{z}}\) + c = 0

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Question 38.
Show that the complex numbers z satisfying z2 + \((\overline{\mathbf{z}})^{2}\) = 2 constitute a hyperbola.
Solution:
Substituting z = x + iy in the given equation
z2 + (\(\overline{\mathbf{z}}\))2 = 2, we obtain the cartesian form of the given equation.
∴ (x + iy)2 + (x – iy)2 = 2
i.e., x2 – y2 + 2ixy + x2 – y2 – 2ixy = 2
i.e., x2 – y2 = 1.
Since, this equation denotes a hyperbola, all the complex numbers satisfying
Inter 2nd Year Maths 2A Complex Numbers Important Questions 39
lie on the hyperbola x2 – y2 = 1.

Question 39.
Show that the points in the Argand diagram represented by the complex numbers 1 + 3i, 4 – 3i, 5 – 5i are collinear.
Solution:
Let the three complex numbers be represented in the Argand plane by the points P, Q, R respectively. Then P = (1, 3), Q = (4, -3), R = (5, -5). The slope of the line segment joining P,Q is \(\frac{3+3}{1-4}\) = \(\frac{6}{-3}\) = -2.
Similarly the slope of the line segment joining Q, R is \(\frac{-3+5}{4-5}\) = \(\frac{2}{-1}\) = -2.
Since the slope of PQ is the slope of QR, the points P, Q and R are collinear.

Question 40.
Find the equation of the straight line joining the points represented by (- 4 + 3i), (2 – 3i) in the Argand plane.
Solution:
Take the given points as
A = -4 + 3i = (-4, 3)
B = 2 – 3i = (2, -3)
Then equation of the straight line \(\overleftrightarrow{\mathrm{AB}}\) is
y – 3 = \(\frac{3+3}{-4-2}\)(x + 4)
i.e., x + y + 1 = 0.

Question 41.
z = x + iy represents a point in the Argand plane, find the locus of z. Such that |z| = 2.
Solution:
|z| = 2, z = x + iy
if \(\sqrt{x^{2}+y^{2}}\) = 2
if \(\sqrt{x^{2}+y^{2}}\) = 2
if and only if x2 + y2 = 4
The equation x2 + y2 = 4 represents the circle with centre at the origin (0, 0) and radius 2 units.
∴ The locus of |z| = 2 is the circle
x2 + y2 = 4

Question 42.
The point P represents a complex number z in the Argand plane. If the amplitude of z is \(\frac{\pi}{4}\), determine the locus of P.
Solution:
Let z = x + iy.
By hypothesis, amplitude of z = \(\frac{\pi}{4}\)
Hence tan-1 \(\left(\frac{y}{x}\right)\) = \(\frac{\pi}{4}\) and \(\frac{y}{x}\) = tan \(\frac{\pi}{4}\)
Hence x = y
∴ The locus of P is x = y.

Inter 2nd Year Maths 2A Complex Numbers Important Questions

Question 43.
If the point P denotes the complex number z = x + iy in the Argand plane and if \(\frac{z-i}{z-1}\) is a purely imaginary number, find the locus of P.
Solution:
We note that the quotient \(\frac{z-i}{z-1}\) is not defined if z = 1.
Inter 2nd Year Maths 2A Complex Numbers Important Questions 40
∴ The locus of P is the circle
x2 + y2 – x – y = 0
excluding the point (1, 0).

Question 44.
Describe geometrically the following subsets of C.
i) {z ∈ C| |z – 1 + i| = 1}
ii) {z ∈ C| |z + i| ≤ 3|
Solution:
i) Let S = {z ∈ C| z – 1 + i| = 1}
If we write z = (x, y), then
S = {(x, y) ∈ R2||x + iy – 1 + i| = 1}
= {x, y) ∈ R2 || x + i(y – 1)| ≤ 3}
= {(x, y) ∈ R2 || (x – 1)2 + (y + 1)2 = i}
Hence S is a circle with centre (1, -1) and radius 1 unit.

ii) Let S’ = {z ∈ C || z + i| ≤ 3}
Then S = {(x, y ∈ R2 || x + iy + i| ≤ 3}
= {(x, y) ∈ R2 || x2 + i(y + 1) ≤ 3}
= {(x, y) ∈ R2 || x2 + (y + 1)2 ≤ 9}
Hence S’ is the closed circular disc with centre at (0, -1) and radius 3 units.

Inter 2nd Year Maths 2A Random Variables and Probability Distributions Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 10 Random Variables and Probability Distributions to solve questions creatively.

Intermediate 2nd Year Maths 2A Random Variables and Probability Distributions Formulas

Random variable:
→ Suppose S is the sample space of a random experiment then any function X : S → R is called a random variable.

→ Let S be a sample space and X : S → R.be a random variable. The function F : R → R defined by F(x) = P(X ≤ x), is called probability distribution function of the random variable X.

→ A set ‘A’ is said to be countable if there exists a bijection from A onto a subset of N.

→ Let S be a sample space. A random variable X : S → R is said to be discrete or discontinuous if the range of X is countable.

Inter 2nd Year Maths 2A Random Variables and Probability Distributions Formulas

→ If X : S → R is a discrete random variable with range {x1, x2, x3, ……………. } then
\(\sum_{r=1}^{\infty}\) P(x = xr) = 1

→ Let X : S → R be a discrete random variable with range {x1, x2, x3, …………….} If Σxr P(X = xr) exists, then Σxr. P(X = x) is called the mean of the random variable X. It is denoted by µ or x . If Σ (xr – µ)2 P(X = Xr) exists, then Σ(xr – µ)2 P(X = Xr) is called variance of the random variable X. It is denoted by σ2.

→ The positive square root of the variance is called the standard deviation of the Fandom variable x. It is denoted by σ.

Binomial distribution:
→ Let n be a positive integer and p be a real number-such that 0 ≤ p ≤ 1. A random variable x with range {0, 1, 2, 3, ……….. n} is said to follows (or have) binomial distribution or Bernoulli distribution with parameters n and p if P (X = r) = nCr pr qn – r for r = 0, 1, 2, ………. n where q = 1 – p. Its Mean µ = np and variance σ2 = npq. n and p are called. parameters of the Binomial distribution.

Inter 2nd Year Maths 2A Random Variables and Probability Distributions Formulas

Poisson distribution:
→ Let λ > 0 be a real, number. A, random variable x with range {0, 1, 2, ……… n} is said to follows (have) poisson distribution with parameter λ if P(X = r) = \(\frac{e^{-\lambda} \lambda^{r}}{r !}\) for r = 0, 1, 2, ……………. . Its Mean = λ and variance = λ. Its parameter is λ.

→ If X : S → R is a discrete random variable with range {x1 x2, x3, …. } then \(\sum_{r=1}^{\infty}\) P (X = xr) = 1

→ Let X : S → R be a discrete random variable with range {x1 x2, x3, …..} .If Σ xr P(X = xr) exists, then Σ xr P(X = xr) is called the mean of the random variable X. It is denoted by or x.

→ If Σ(xr – μ)2 P(X = xr) exists, then Σ (xr – μ)2 P(X = xr) is called variance of the random variable X. It is denoted by σ2. The positive square root of the variance is called the standard deviation of the random variable X. It is denoted by σ

→ If the range of discrete random variable X is {x1 x2, x3, …. xn, ..} and P(X = xn) = Pn for every Integer n is given then σ2 + μ2 = Σxn2Pn

Binomial Distribution:
A random variable X which takes values 0, 1, 2, ., n is said to follow binomial distribution if its probability distribution function is given by
P(X = r) = ncrprqn-r, r = 0,1,2, ……………. , n where p, q > 0 such that p + q = 1.

→ If the probability of happening of an event in one trial be p, then the probability of successive happening of that event in r trials is pr.

→ Mean and variance of the binomial distribution

  • The mean of this distribution is \(\sum_{i=1}^{n}\) Xipi = latex]\sum_{X=1}^{n}[/latex] X. nCxqn-xpX = np,
  • The variance of the Binomial distribution is σ2 = npq and the standard deviation is σ = \(\sqrt{(n p q)}\).

→ The Poisson Distribution : Let X be a discrete random variable which can take on the values 0, 1, 2,… such that the probability function of X is given by
f(x) = P(X = x) = \(\frac{\lambda^{x} e^{-\lambda}}{x !}\), x = 0, 1, 2, ………….
where λ is a given positive constant. This distribution is called the Poisson distribution and a random variable having this distribution is said to be Poisson distributed.

Inter 2nd Year Maths 2A Probability Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 9 Probability to solve questions creatively.

Intermediate 2nd Year Maths 2A Probability Formulas

→ An experiment which can be repeated any number of times under essentially identical conditions and which is associated with a set of known results, is called a random experiment or trail if the result of any single repetition of the experiment ism certain and is any one of the associated set.

→ A combination of elementary events in a trial is called an event.

→ The list of all elementary events in a trail is called list of exhaustive events.

→ Elementary events are said to be equally likely if they have the same chance of happening.

Inter 2nd Year Maths 2A Probability Formulas

→ If there are n exhaustive equally likely elementary events in a trail and m of them are
favourable to an event A, then \(\frac{m}{n}\) is called the probability of A. It is denoted by P(A).

→ P(A) = \(\frac{\text { Number of favourable cases (outcomes) with respect } A}{\text { Number of all cases (outcomes) of the experiment }}\)

→ The set of all possible outcomes (results) in a trail is called sample space for the trail. It is denoted by ‘S’. The elements of S are called sample points.

→ Let S be a sample space of a random experiment. Every subset of S is called an event.

→ Let S be a sample space. The event Φ is called impossible event and the event S is called certain event in S.

→ Two events A, B in a sample space S are said to be disjoint or mutually exclusive if A ∩ B = Φ

→ Two events A, B in a sample space S are said to be exhaustive if A ∪ B = S.

→ Two events A, B in a sample space S are said to be complementary if A ∪ B = S, A ∩ B = Φ. The complement B of A is denoted by Ā (or) Ac.

→ Let S be a finite sample space. A real valued function P: p(s) → R is said to be a probability function on S if (i) P(A) ≥ 0 ∀ A ∈ p(s) (ii) p(s) = 1

→ A, B, ∈ p(s), A ∩ B = Φ ⇒ P (A ∪ B) = P(A) + P(B). Then P is called probability function and for each A ∈ p(s), P(A) is called the probability of A.

Inter 2nd Year Maths 2A Probability Formulas

→ If A is an event in a sample space S, then 0 ≤ P(A) ≤ 1.

→ If A is an event in a sample space S, then the ratio P(A) : P̄(Ā) is called the odds favour to A and P̄(A): P(A) is called the odds against to A.

→ If A, B are two events in a sample space S, then P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

→ If A, B are two events in a sample space, then P(B – A) = P(B) – P(A ∩ B) and P(A – B) = P(A) – P(A ∩ B) .

→ If A, B, C are three events in a sample space S, then
P(A ∪ B ∪ C) = P(A) + P(B) + P(C) – P(A ∩ B) – P(B ∩ C) – P(C ∩ A) + P(A ∩ B ∩ C).

→ If A, B are two events in a sample space then the event of happening B after the event A happening is called conditional event It is denoted by B/A.

→ If A, B are two events in a sample space S and P(A) ≠ 0, then the probability of B after the event A has occured is called conditional probability of B given A. It is denoted by P\(\left(\frac{B}{A}\right)\)

→ If A, B are two events in a sample space S such that P(A) ≠ o then \(P\left(\frac{B}{A}\right)=\frac{n(A \cap B)}{n(A)}\)

→ Let A, B be two events in a sample space S such that P(A) ≠ 0, P(B) ≠ 0, then

  • \(P\left(\frac{A}{B}\right)=\frac{P(A \cap B)}{P(B)}\)
  • \(P\left(\frac{B}{A}\right)=\frac{P(A \cap B)}{P(A)}\)

→ Multiplication theorem on Probability: If A and B are two events of a sample space 5 and P(A) > 0, P(B) > 0 then P(A n B) = P(A), P(B/A) = P(B). P(A/B).

→ Two events A and B are said to be independent if P(A ∩ B) = P(A). P(B). Otherwise A, B are said to be dependent.

Inter 2nd Year Maths 2A Probability Formulas

→ Bayes’ theorem : Suppose E1, E2 ……… En are mutually exclusive and exhaustive events of a Random experiment with P(Ei) > 0 for ī = 7, 2, ……… n in a random experiment then we have

\(p\left(\frac{E_{k}}{A}\right)\) = \(\frac{P\left(E_{k}\right) P\left(\frac{A}{E_{k}}\right)}{\sum_{i=1}^{n} P\left(E_{i}\right) P\left(\frac{A}{E_{i}}\right)}\) for k = 1, 2 …… n.

Random Experiment:
If the result of an experiment is not certain and is any one of the several possible outcomes, then the experiment is called Random experiment.

Sample space:
The set of all possible outcomes of an experiment is called the sample space whenever the experiment is conducted and is denoted by S.

Event:
Any subset of the sample space ‘S’ is called an Event.

Equally likely Events:
A set of events is said to be equally likely if there is no reason to expect one of them in preference to the others.

Exhaustive Events:
A set of events is said to be exhaustive of the performance of the experiment always results in the occurrence of at least one of them.

Mutually Exclusive Events:
A set of events is said to the mutually exclusive if happening of one of them prevents the happening of any of the remaining events.

Classical Definition of Probability:
If there are n mutually exclusive equally likely elementary events of an experiment and m of them are favourable to an event A then the probability of A denoted by P(A) is defined as min.

Inter 2nd Year Maths 2A Probability Formulas

Axiomatic Approach to Probability:
Let S be finite sample space. A real valued function P from power set of S into R is called probability function if
P(A) ≥ 0 ∀ A ⊆ S
P(S) = 1, P(Φ) = 0;
(3) P(A ∪ B) = P(A) + P(B) if A ∩ B = Φ. Here the image of A w.r.t. P denoted by P(A) is called probability of A.

Note:

  • P(A) + P(A̅) = 1
  • If A1 ⊆ A2, then P(A1) < P(A2) where A1, A2 are any two events.

Odds in favour and odds against an Event:
Suppose A is any Event of an experiment. The odds in favour of Event A is P(A̅) : P(A). The odds against of A is P(A̅) : P(A).

Addition theorem on Probability:
If A, B are any two events in a sample space S, then P(A ∪ B) = P(A) + P(B) – P(A ∩ B).
If A and B are exclusive events

  • P(A ∪ B) = P(A) + P(B)
  • P(A ∪ B ∪ C) = P(A) + P(B) + P(C) – P(A ∩ B) P(A ∩ C) – P(B ∩ C) + P(A ∩ B ∩ C).

Conditional Probability:
If A and B are two events in sample space and P(A) ≠ 0. The probability of B after the event A has occurred is called the conditional probability of B given A and is denoted by P(B/A).
P(B/A) = \(\frac{\mathrm{n}(\mathrm{A} \cap \mathrm{B})}{\mathrm{n}(\mathrm{A})}=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{A})}\)
Similarly
n(A ∩ B) = \(\frac{\mathrm{n}(\mathrm{A} \cap \mathrm{B})}{\mathrm{n}(\mathrm{B})}=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}\)

Independent Events:
The events A and B of an experiment are said to be independent if occurrence of A cannot influence the happening of the event B.
i.e. A, B are independent if P(A/B) = P(A) or P(B/A) = P(B).
i.e. P(A ∩ B) = P(A) . P(B).

Multiplication Theorem:
If A and B are any two events in S then
P(A ∩ B) = P(A) P(B/A) if P(A)≠ 0.
P (B) P(A/B) if P(B) ≠ 0.
The events A and B are independent if
P(A ∩ B) = P(A) P(B).
A set of events A1, A2, A3 … An are said to be pair wise independent if
P(Ai n Aj) = P(Ai) P(Aj) for all i ≠ J.

Inter 2nd Year Maths 2A Probability Formulas

Theorem:
Addition Theorem on Probability. If A, B are two events in a sample space S
Then P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
Proof:
FRom the figure (Venn diagram) it can be observed that
(B – A) ∪ (A ∩ B) = B, (B – A) ∩ (A ∩ B) = Φ
Inter 2nd Year Maths 2A Probability Formulas 1
∴ P(B) = P[(B – A) ∪ (A ∩ B)]
= P(B – A) + P(A ∩ B)
⇒ P(B – A) = P(B) – P(A ∩ B) ………(1)

Again from the figure, it can be observed that
A ∪ (B – A) = A ∪ B, A ∩ (B – A) = Φ
∴ P(A ∪ B) = P[A ∪ (B – A)]
= P(A) + P(B – A)
= P(A) + P(B) – P(A ∩ B) since from (1)
∴ P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

Theorem:
Multiplication Theorem on Probability.
Let A, B be two events in a sample space S such that P(A) ≠ 0, P(B) ≠ 0, then
i) P(A ∩ B) = P(A)P\(\left(\frac{B}{A}\right)\)
ii) P(A ∩ B) = P(B)P\(\left(\frac{A}{B}\right)\)
Proof:
Let S be the sample space associated with the random experiment. Let A, B be two events of S show that P(A) ≠ 0 and P(B) ≠ 0. Then by def. of confidential probability.
P\(\left(\frac{B}{A}\right)=\frac{P(B \cap A)}{P(A)}\)
∴ P(B ∩ A) = P(A)P\(\left(\frac{B}{A}\right)\)
Again, ∵P(B) ≠ 0
\(\left(\frac{\mathrm{A}}{\mathrm{B}}\right)=\frac{\mathrm{P}(\mathrm{A} \cap \mathrm{B})}{\mathrm{P}(\mathrm{B})}\)
∴ P(A ∩ B) = P(B) . P\(\left(\frac{\mathrm{A}}{\mathrm{B}}\right)\)
∴ P(A ∩ B) = P(A) . P\(\left(\frac{B}{A}\right)\) = P(B).P\(\left(\frac{\mathrm{A}}{\mathrm{B}}\right)\)

Inter 2nd Year Maths 2A Probability Formulas

Baye’s Theorem or Inverse probability Theorem
Statement:
If A1, A2, … and An are ‘n’ mutually exclusive and exhaustive events of a random experiment associated with sample space S such that P(Ai) > 0 and E is any event which takes place in conjuction with any one of Ai then
P(Ak/E) = \(\frac{P\left(A_{k}\right) P\left(E / A_{k}\right)}{\sum_{i=1}^{n} P\left(A_{i}\right) P\left(E / A_{i}\right)}\), for any k = 1, 2, ………. n;
Proof:
Since A1, A2, … and An are mutually exclusive and exhaustive in sample space S, we have Ai ∩ Aj = for i ≠ j, 1 ≤ i, j ≤ n and A1 ∪ A2 ∪…. ∪ An = S.

Since E is any event which takes place in conjunction with any one of Ai, we have
E = (A1 ∩ E) ∪ (A2 ∩ E) ∪ …………….. ∪(An ∩ E).

We know that A1, A2, ……… An are mutually exclusive, their subsets (A1 ∩ E), (A2 ∩ E) , … are also
mutually exclusive.

Now P(E) = P(E ∩ A1) + P(E ∩ A2) + ………. + P(E ∩ An) (By axiom of additively)
= P(A1)P(E/A1) + P(A2)P(E/A2) + ………… + P(An)P(E/An)
(By multiplication theorem of probability)
= \(\sum_{i=1}^{n}\)P(Ai)P(E/Ai) …………..(1)

By definition of conditional probability
P(Ak/E) = \(\frac{P\left(A_{k} \cap E\right)}{P(E)}\) for
= \(\frac{P\left(A_{k}\right) P\left(E / A_{k}\right)}{P(E)}\)
(By multiplication theorem)
= \(\frac{P\left(A_{k}\right) P\left(E / A_{k}\right)}{\sum_{i=1}^{n} P\left(A_{I}\right) p\left(E / A_{i}\right)}\) from (1)
Hence the theorem

Inter 2nd Year Maths 2A Measures of Dispersion Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 8 Measures of Dispersion to solve questions creatively.

Intermediate 2nd Year Maths 2A Measures of Dispersion Formulas

→ The arithmetic mean of ungrouped data = \(\frac{\Sigma x_{i}}{n}\) where n is the number of observations.

Inter 2nd Year Maths 2A Measures of Dispersion Formulas

→ The median of ungrouped data
First expressing the n data points in the ascending order of magnitude.

→ If n is odd then \(\frac{n+1}{2}\)the data points in the median of the given ungrouped data.

→ If n is even then the average of \(\frac{n}{2}, \frac{n+2}{2}\) the data points in the median of the given ungrouped data.

  • Range,
  • Mean deviation,
  • Variance and,
  • Standard deviation are some measures of dispusion for ungrouped and grouped data.

→ Range is defined as the difference between the maximum value and the minimum value of the series of observations.

Mean Deviation for ungrouped distribution:
→ Mean deviation about the mean = \(\frac{\text { Sum of the absolutevalues of deviationsfrom } \bar{x}}{\text { Number of Observations }} .\)
= \(\frac{\sum\left|x_{i}-\bar{x}\right|}{n}\) where x̅ is the mean

→ Mean Deviation about the median = \(\frac{\sum\left|x_{i}-{median}\right|}{n}\)

Mean Deviation for grouped data:
→ Mean Deviation about mean = \(\frac{1}{N}\) Σfi|x – x̅i|
Where N = Σfi and x̅ is the mean

→ Mean Deviation about median = \(\frac{1}{N}\) Σfi|xi – median|
When N = Σfi

Inter 2nd Year Maths 2A Measures of Dispersion Formulas

→ Ungrouped data variance σ2 = \(\frac{1}{n}\) = Σ(xi – x̅)2
Standard deviation σ = \(\sqrt{\frac{1}{n} \sum\left(x_{i}-\bar{x}\right)^{2}}\)

→ Discrete frequency distribution variance σ2 = \(\frac{1}{n}\) = Σfi(xi – x̅)2 where x̅ is the mean]
Standard deviation σ = \(\frac{1}{N}\) \(\sqrt{\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}\)

→ Continuous frequency distribution standard deviation σ = \(\frac{1}{N} \sqrt{N \sum f_{i} x_{i}{ }^{2}-\left(\sum f_{i} x_{i}\right)^{2}}\)
(or) σ = \(\frac{h}{N}\) \(\sqrt{N \Sigma f_{i} y_{i}^{2}-\left(\sum f_{i} y_{i}\right)^{2}}\)

→ Co-efficient of variation = \(\frac{\sigma}{x}\) × 100 (x̅ ≠ 0)

Inter 2nd Year Maths 2A Measures of Dispersion Formulas

→ If each observation in a data is. multiplied by a constant K, then the variance of the resulting observations is K2 times that or the variance of original observations.

→ If each of the observations x1, x2, ………, xn is increased by K, where K is a positive or negative number then the variance remains unchanged.

Measure of Central Tendency:
1. Mathematical Average:
a) Arithmetic mean (A.M.)
b) Geometric mean (G.M.)
c) Harmonic mean (H.M.)

2. Averages of Position:
a) Median
b) Mode

Arithmetic Mean:
(1) Simple arithmetic mean in individual series
(i) Direct method: If the series in this case be x1, x2, …………. xn then the arithmetic mean x̄ is given by
x̄ = \(\frac{\text { Sum of the series }}{\text { Number of terms }}\)
i.e x̄ = \(\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}\)

(2) Simple arithmetic mean in continuous series If the terms of the given series be x1, x2, …………. xn and the corresponding frequencies be f1, f2, …………. fn then the arithmetic mean x̄ is given by,
x̄ = \(\frac{f_{1} x_{1}+f_{2} x_{2}+\ldots+f_{n} x_{n}}{f_{1}+f_{2}+\ldots+f_{n}}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} f_{i}}\)

Continuous Series:
If the series is continuous then xii’s are to be replaced by mi’s where mi’s are the mid values of the class intervals.

Mean of the Composite Series:
If x̄i,(i = 1, 2, …………… k) are the means of k-component series of sizes ni(i = 1,2,….,k) respectively, then the mean x̄ of the composite series obtained on combining the component series is given by the formula x̄ = \(\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}+\ldots+n_{k} \bar{x}_{k}}{n_{1}+n_{2}+\ldots+n_{k}}=\frac{\sum_{i=1}^{n} n_{i} \bar{x}_{i}}{\sum_{i=1}^{n} n_{i}}\)

Geometric Mean:
If x1, x2, …………. xn are n values of a variate x, none of them being zero, thengeometric mean (G.M.) is given by G.M. (x1, x2, …………. xn)1/n

In case of frequency distribution, G.M. of n values x1, x2, …………. xn of a variate x occurring with frequency f1, f2, …………. fn is given by G.M = (x1f1, x2f2, …………. xnfn)1/N, where N = f1 + f2 + ……….. + fn

Continuous Series:
If the series is continuous then xjj’s are to be replaced by mii’s where mii’s are the mid values of the class intervals.

Harmonic Mean:
The harmonic mean of n items x1, x2, …………. xn is defined as H.M. = \(\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots .+\frac{1}{x_{n}}}\)
If the frequency distribution is f1, f2, …………. fn respectively, then H.M = \(\frac{f_{1}+f_{2}+f_{3}+\ldots . .+f_{n}}{\left(\frac{f_{1}}{x_{1}}+\frac{f_{2}}{x_{2}}+\ldots .+\frac{f_{n}}{x_{n}}\right)}\)

Inter 2nd Year Maths 2A Measures of Dispersion Formulas

Median:
The median is the central value of the set of observations provided all the observations are arranged in the ascending or descending orders. It is generally used, when effect of extreme items is to be kept out.

(1) Calculation of median
(i) Individual series: If the data is raw, arrange in ascending or descending order. Let n be the number of observations.
If n is odd, Median = value of \(\left(\frac{n+1}{2}\right)^{t h}\) item.
If n is even, Median = \(\frac{1}{2}\)[value of \(\left(\frac{n}{2}\right)^{\text {th }}\) item + value of \(\left(\frac{n}{2}+1\right)^{\text {th }}\) item]

(ii) Discrete series: In this case, we first find the cumulative frequencies of the variables arranged in ascending or descending order and the median is given by
Median = \(\left(\frac{n+1}{2}\right)^{t h}\) observations, where n is the cumulative frequency.

(iii) For grouped or continuous distributions: In this case, following formula can be used.
(a) For series in ascending order, Median = l + \(\frac{\left(\frac{N}{2}-C\right)}{f}\) × i
Where l = Lower limit of the median class
f = Frequency of the median class
N = The sum of all frequencies
I = The width of the median class
C = The cumulative frequency of the class preceding to median class.

(b) For series in descending order
Median = u – \(\left(\frac{\frac{N}{2}-C}{f}\right)\) × i, where u = upper limit of the median class, N = \(\sum_{i=1}^{n}\)fi
As median divides a distribution into two equal parts, similarly the quartiles, quintiles, deciles and percentiles divide the distribution respectively into 4, 5, 10 and 100 equal parts. The th quartile is given by Q = l + \(\left(\frac{j \frac{N}{4}-C}{f}\right)\)i:j= 1,2,3. Q1 is the lower quartile, Q2 is the median and Q3 is called the upper quartile.

(2) Lower qualities

  • Discrete series: Q1 = size of \(\left(\frac{n+1}{4}\right)^{\text {th }}\) item
  • Continuous series : Q1 = l + \(\frac{\left(\frac{N}{4}-C\right)}{f}\) × i

(3) Upper qualities

  • Discrete series : Q3 = size of \(\left[\frac{3(n+1)}{4}\right]^{\text {th }}\) item
  • Continuous series : Q3 = l + \(\frac{\left(\frac{3N}{4}-C\right)}{f}\) × i

Mode:
The mode or model value of a distribution is that value of the variable for which the frequency is maximum. For continuous series, mode is calculated as,
Mode = l1 + \(\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right]\) × i
Where, l1 = The lower limit of the model class
f1 = The frequency of the model class
f0 = The frequency of the class preceding the model class
f2 = The frequency of the class succeeding the model class
i = The size of the model class.

Empirical relation :
Mean – Mode = 3(Mean – Median) ⇒ Mode = 3 Median – 2 Mean.

Measure of dispersion:
The degree to which numerical data tend to spread about an average value is called the dispersion of the data. The four measure of dispersion are

  1. Range
  2. Mean deviation
  3. Standard deviation
  4. Square deviation

(1) Range:
It is the difference between the values of extreme items in a series. Range = Xmax – Xmin

  • The coefficient of range (scatter) = \(\frac{x_{\max }-x_{\min }}{x_{\max }+x_{\min }}\)
    Range is not the measure of central tendency. Range is widely used in statistical series relating to quality control in production.
  • Range is commonly used measures of dispersion in case of changes in interest rates, exchange rate, share prices and like statistical information. It helps us to determine changes in the qualities of the goods produced in factories.

Quartile deviation or semi inter-quartile range:
It is one-half of the difference between the third quartile and first quartile i. e., Q.D. = \(\frac{Q_{3}-Q_{1}}{2}\) and coefficient of quartile deviation = \(\frac{Q_{3}-Q_{1}}{Q_{3}+Q_{1}}\), where Q3 is the third or upper quartile and Q1 is the lowest or first quartile.

Inter 2nd Year Maths 2A Measures of Dispersion Formulas

(2) Mean Deviation:
The arithmetic average of the deviations (all taking positive) from the mean, median or mode is known as mean deviation.
Mean deviation is used for calculating dispersion of the series relating to economic and social inequalities. Dispersion in the distribution of income and wealth is measured in term of mean deviation.

  • Mean deviation from ungrouped data (or individual series) Mean deviation = \(\frac{\sum|x-M|}{n}\) where |x – M| means the modulus of the deviation of the variate from the mean (mean, median or mode) and n is the number of terms.
  • Mean deviation from continuous series: Here first of all we find the mean from which deviation is to be taken. Then we find the deviation dM =| x -M| of each variate from the mean M so obtained.
    • Next we multiply these deviations by the corresponding frequency and find the product f.dM and then the sum ΣfdM of these products.
    • Lastly we use the formula, mean deviation = \(\frac{\sum f|x-M|}{n}=\frac{\sum f d M}{n}\), where n = Σf.

(3) Standard Deviation:
Standard deviation (or S.D.) is the square root of the arithmetic mean of the square of deviations of various values from their arithmetic mean and is generally denoted by aread as sigma. It is used in statistical analysis.
(i) Coefficient of standard deviation: To compare the dispersion of two frequency distributions the relative measure of standard deviation is computed which is known as coefficient of standard deviation and is given by
Coefficient of S.D. = \(\frac{\sigma}{\bar{x}}\), where x̄ is the A.M.

(ii) Standard deviation from individual series σ = \(\sqrt{\frac{\sum(x-\bar{x})^{2}}{N}}\)
where, x̄ = The arithmetic mean of series
N = The total frequency.

(iii) Standard deviation from continuous series σ = \(\sqrt{\frac{\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}}{N}}\)
where, x̄ = Arithmetic mean of series
xi = Mid value of the class
fi = Frequency of the corresponding
N = Σf = The total frequency

Short cut Method:
(i) σ = \(\sqrt{\frac{\sum f d^{2}}{N}-\left(\frac{\sum f d}{N}\right)^{2}}\)
(ii) σ = \(\sqrt{\frac{\sum d^{2}}{N}-\left(\frac{\sum d}{N}\right)^{2}}\)
where, d = x – A = Deviation from the assumed mean A
f = Frequency of the item
N = Σf = Sum of frequencies

(4) Square Deviation:
(i) Root mean square deviation
S = \(\sqrt{\frac{1}{N} \sum_{i=1}^{n} f_{i}\left(x_{i}-A\right)^{2}}\)
where A is any arbitrary number and S is called mean square deviation.

(ii) Relation between S.D. and root mean square deviation: If σ is the standard deviation and S is the root mean square deviation.
Then, S2 = σ2 + d2.
Obviously, S2 will be least when d = 0 i.e., x̄ = A
Hence, mean square deviation and consequently root mean square deviation is least if the deviations are taken from the mean.

Inter 2nd Year Maths 2A Measures of Dispersion Formulas

Variance:
The square of standard deviation is called the variance. Coefficient of standard deviation and variance: The coefficient of standard deviation is the ratio of S.D. to A.M. i.e., \(\frac{\sigma}{x}\).
Coefficient of variance = coefficient of S.D.× 100 = \(\frac{\sigma}{x}\) × 100 .

Variance of the combined series :
If n1,n2 are the sizes, x̄1, x̄2 the means and σ1, σ2 the standard deviation of two series, then σ2 = \(\frac{1}{n_{1}+n}\)[n112 + d12) + n222 + d22)]
where d1 = x̄1 – x̄, d2 = x̄2 – x̄ and x̄ = \(\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n_{1}+n_{2}}\)

Inter 2nd Year Maths 2A Partial Fractions Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 7 Partial Fractions to solve questions creatively.

Intermediate 2nd Year Maths 2A Partial Fractions Formulas

→ The quotient of two polynomials f(x) and Φ(x) where Φ(x) ≠ 0, is called a rational fraction.

→ If the degree of f(x) < the degree of Φ(x) in a rational fraction \(\frac{f(x)}{\phi(x)}\), then the rational fraction is called a proper fraction.

→ If the degree of f(x) ≥ the degree of Φ(x) in a rational fraction \(\frac{f(x)}{\phi(x)}\), then the rational fraction is called a proper fraction.

Inter 2nd Year Maths 2A Fractions Formulas

→ Let \(\frac{f(x)}{\phi(x)}\) be a proper fraction

→ When Φ(x) contains non-repeated linear factors only corresponding to every non-repeated linear factor (ax +b) of Φ(x) there exists a partial fraction of the form \(\frac{A}{a x+b}\) where A is a real number.

→ When Φ(x) contains repeated and non-repeated linear factors only corresponding to every repeated linear factor (ax + b)p of Φ(x) there exist fractions of the form.
\(\frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\ldots+\frac{A_{p}}{(a x+b)^{p}}\) Where A1, A2, A3 ………… Ap are real numbers.

→ When Φ(x) contains non-repeated irreducible factors only. Corresponding to every non-repeated irreducible quadratic factor ax2 + bx + c of Φ(x) of exists a partial fraction of the form \(\frac{A x+B}{a x^{2}+b x+C}\) where A and B are real numbers.

→ When Φ(x) contains repeated and non-repeated irreducible factors only. Corresponding to every repeated quadratic factor (ax2 + bx + c0p of Φ(x) there exists the partial fractions of the form
\(\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}\) + \(\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}\) + ……… + \(\frac{A_{p} x+\dot{B}_{p}}{\left(a x^{2}+b x+c\right)^{p}}\) where A1, A2, …….. Ap and B1, B2, ………. Bp are real numbers.

Inter 2nd Year Maths 2A Fractions Formulas

→ Let \(\frac{f(x)}{\phi(x)}\) be a improper fraction, then
\(\frac{f(x)}{\phi(x)}\) = Q(x) + \(\frac{R(x)}{\phi(x)}\) where Q(x) is quotient and R(x) is the remainder, and Degree R(x) < that of Φ(x).

→ Remainder obtained when f(x) is divided by x – a is f(a).
If degree of divisor is ‘n’, then the degree of remainder is (n – 1)
f(x), g(x) are two polynomials. If g(x) ≠ 0, then ∃ two polynomials q(x) , r(x) such that
\(\frac{f(x)}{g(x)}\) = q(x) + \(\frac{r(x)}{g(x)}\) if the degree of f(x) is > that of g(x)

II. Method of resolving proper fraction \(\frac{f(x)}{g(x)}\) into partial fractions.
Type 1 : When the denominator g(x) contains non-repeated factors i.e
g(x) = (x – a)(x – b)(x – c)
\(\frac{f(x)}{(x-a)(x-b)(x-c)}=\frac{\mathrm{A}}{\mathrm{x}-\mathrm{a}}+\frac{\mathrm{B}}{\mathrm{x}-\mathrm{b}}+\frac{\mathrm{C}}{\mathrm{x}-\mathrm{c}}\)

Type 2 : When the denominator g(x) contains repeated and non repeated linear factors
i.e g(x) = (x – a)2(x – b)
\(\frac{f(x)}{(x-a)^{2}(x-b)}=\frac{A}{x-a}+\frac{B}{(x-a)^{2}}+\frac{C}{(x-b)}\)

Type 3 : When the denominator g(x) contains non repeated irreducible quadratic factors
i.e g(x) = (ax2 + bx + c)(x – d)

Type 4 : When the denominator g(x) contains repeated irreducible quadratic factors
i.e g(x) = (ax2 + bx + c)2(x – d)
\(\frac{f(\mathrm{x})}{\left(\mathrm{ax}{ }^{2}+\mathrm{bx}+\mathrm{c}\right)^{2}(\mathrm{x}-\mathrm{d})}=\frac{\mathrm{Ax}+\mathrm{B}}{\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)}+\frac{\mathrm{Cx}+\mathrm{D}}{\left(\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}\right)^{2}}+\frac{\mathrm{E}}{\mathrm{x}-\mathrm{d}}\)

Inter 2nd Year Maths 2A Binomial Theorem Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 6 Binomial Theorem to solve questions creatively.

Intermediate 2nd Year Maths 2A Binomial Theorem Formulas

→ Let n be a positive integer and x, a be real numbers then
(x + a)n = nC0. xn. a0 + nC1. xn – 1. a1 + nC2. xn – 2. a2 + ……… + nCr. xn – r. ar + ……… + nCn. x0. an = \(\sum_{r=0}^{n}\) nCr.xn – r. ar. and (x – a)nnC0. xn – (x)nnC1. xn – 1a + nC2 xn – 2. a2 …….. + ( – 1)r nCr. xn – r. ar + ……… + (- 1)n nCn.an

Inter 2nd Year Maths 2A Binomial Theorem Formulas

→ The expansion of (x + a)n contains (n + 1) terms.

→ In the expansion, the coefficients nC0, nC1, nC2, ….. nCn are called binomial coefficients and these are simply denoted by C0, C1, C2, …….. Cn,.

→ In the expansion, (r + 1)th term is called the general term. It is denoted by Tr + 1.
∴ Tr + 1 = cCr. xn – r. ar, (0 ≤ r ≤ n)

→ The number of terms in the expansion of (a + b + c)n = \(\frac{(n+1)(n+2)}{2}\)

→ If n is even in the expansion of (x + a)n, the middle term = T\(\left(\frac{n}{2}+1\right)\)

→ If n is odd in the expansion of (x + a)n, it has two middle terms which are T\(\left(\frac{n+1}{2}\right)\), T\(\left(\frac{n+3}{2}\right)\).

→ If \(\frac{(n+1)|x|}{|x|+1}\) = p, a positive integer then pth and (p + 1)th terms are the numerically greatest terms in the expansion of (1 + x)n.

Inter 2nd Year Maths 2A Binomial Theorem Formulas

→ If \(\frac{(n+1)|x|}{|x|+1}\) = P + F where p is a positive integer and 0 < F < 1 then (p + 1)th the numerically greatest term in the expansion of (1 + x)n

→ C0 + C1 + C2 + ………. + Cn = 2n

→ C0 – C1 + C2 – C3 + ……… + (- 1)nCn = 0

→ C0 + C2 + C 4 + …………… = C1 + C3 + C5 + …………….. = 2n – 1

→ \(\sum_{r=0}^{n}\) nCr = 2n

→ \(\sum_{r=0}^{n}\) r. nCr = n. 2n – 1

→ \(\sum_{r=2}^{n}\) r(r – 1). nCr = n(n – 1). 2n – 2

→ \(\sum_{r=1}^{n}\) r2 . nCr = n(n + 1). 2n – 2

→ a. C0 + (a + d). C1 + (a + 2d). C2 + ……… + (a + nd). Cn = (2a + nd) 2n – 1

→ C0Cr + C1Cr + 1 + C2Cr + 2 + ………… + Cn – r. Cn = 2nCn + r

→ If f(x) = (a0 + a1x + a2x2 + ……… amxm)n then

  • Sum of the coefficients = f(1)
  • Sum of the coefficients of even powers of x is \(\frac{f(1)+f(-1)}{2}\)
  • Sum of the coefficients of odd powers of x is \(\frac{f(1)-f(-1)}{2}\)

→ Let n be a positive integer and x is a ,real number such that |x| < 1 then

→ (1 – x)-n = 1 + nx + \(\frac{n(n+1)}{2 !}\) x2 + \(\frac{n(n+1)(n+2)}{3 !}\) x2 + ……… + ……… + \(\frac{n(n+1)(n+2) \ldots \ldots(n+r-1)}{r !}\) xr + ……. to ∞

→ (1 + x)-n = 1,- nx + \(\frac{n(n+1)}{2 !}\) x2 + …….. + \(\frac{(-1)^{r} n(n+1)(n+2) \ldots(n+r-1)}{r !}\) xr + …….. ∞

Inter 2nd Year Maths 2A Binomial Theorem Formulas

→ If |x| < 1, then for p, q ∈ N

→ (1 – x)-p/q = 1 + \(\frac{p}{1 !}\left(\frac{x}{q}\right)\) + \(\frac{p(p+q)}{2 !}\left(\frac{x}{q}\right)^{2}\) + ………. + \(\frac{p(p+q) \ldots \ldots(p+(r-1) q)}{r !}\) \(\left(\frac{x}{q}\right)^{r}\) + …….. ∞

→ (1 + x)-p/q = 1 – \(\frac{p}{1 !}\left(\frac{x}{q}\right)\) + \(\frac{p(p+q)}{2 !}\left(\frac{x}{q}\right)^{2}\) + ………. + \(\frac{(-1)^{r} p(p+q) \ldots(p+(r-1) q)}{r !}\) \(\left(\frac{x}{q}\right)^{r}\) + …….. ∞

→ (1 + x)-p/q = 1 + \(\frac{p}{1 !}\left(\frac{x}{q}\right)\) + \(\frac{(p)(p-q)}{1 .2}\left(\frac{x}{q}\right)^{2}\) + …………. + \(\frac{(p)(p-q)(p-2 q) \ldots \ldots .[p-(r-1) q]}{(r) !}\) \(\left(\frac{x}{\cdot q}\right)^{r}\) + ……… ∞

→ (1 – x)-p/q = 1 – \(\frac{p}{1 !}\left(\frac{x}{q}\right)\) + \(\frac{(p)(p-q)}{1.2}\left(\frac{x}{q}\right)^{2}\) – …………. + (- 1)r \(\) \(\left(\frac{x}{q}\right)^{r}\) + ……… ∞

Binomial Theorem for integral index:
If n is a positive integer then (x + a)n = nCo xn + nC1 xn-1 a + nC2 xn-2 a2 + . … + nCr xn-rar + …… + nCnan

→ The expansion of (x + a)n contains (n + 1) terms.

→ In the expansion, the sum of the powers of x and a in each term is equal to n.

→ In the expansion, the coefficients nC0, nC1. nC2………….. nCn are called binomial coefficients and these are simply denoted by C0, C1, C2 …. CN.
nC0 = 1, nCN = 1, nC1 = n, nCr = nCn-r

→ In the expansion, (r + 1)th term is called the general term. It is denoted by
Tr+1. Thus Tr+1 = nCrxn-rar

→ (x + a)n = \(\sum_{r=0}^{n}\)nCrxn-rar

→ (x + a)n = \(\sum_{r=0}^{n}\)nCrxn-r(-a)r = \(\sum_{r=0}^{n}\)(-1)n nCrxn-r(-a)r = nC0xnnC1xn-1a + nC1xn-2a2 – ……….. + (-1)n nCn an

→ (1 + x)n = \(\sum_{r=0}^{n}\)nCrxr = nC0 + nC0x + ……….. + nCn xn = C0 + C1x + C2x2 + ………. + Cnxn

→ Middle term(s) in the expansion of (x + a)n.

  • If n is even, then (\(\frac{n}{2}\) + 1)th term is the middle term
  • If n is odd, then \(\frac{n+1}{2}\) th and \(\frac{n+3}{2}\) th terms are the middle terms.

→ Numerically greatest term in the expansion of (1 + x)n :

  • If \(\frac{(n+1)|x|}{|x|+1}\) = p, a integer then plu1 and (p + 1) th terms are the numerically greatest terms in the expansion of (1 + x).
  • If \(\frac{(n+1)|x|}{|x|+1}\) = p + F where pis a positive integer and 0< F < 1 then (p+1) th term is the numerically greatest term in the expansion of (1 + x).

Inter 2nd Year Maths 2A Binomial Theorem Formulas

→ Binomial Theorem for rational index: If n is a rational number and
|x| < 1, then 1 + nx + \(\frac{n(n-1)}{2 !}\) x2 + \(\frac{n(n-1)(n-2)}{3 !}\)x3 + ………… = (1 + x)n

→ If |x| < 1 then

  • (1 + x)-1= 1 – x + x2 – x3 + … + (-1)rxr + …….
  • (1 – x)-1 = 1 + x + x2 + x3 + … + xr + …….
  • (1 + x)-2 = 1 – 2x + 3x2 – 4x3 + … + (-1)r (r + 1)xr + ………..
  • (1 – x)-2 = 1 + 2x + 3x2 + 4x3 + … +(r + 1)xr + ….
  • (1 – x)-n = 1 – nx + \(\frac{n(n-1)}{2 !}\) x2 – \(\frac{n(n-1)(n-2)}{3 !}\)x3 + …………..
  • (1 – x)-n = 1 + nx + \(\frac{n(n-1)}{2 !}\) x2 + \(\frac{n(n-1)(n-2)}{3 !}\)x3 + ………

→ If |x| < 1 an dn is a positive integer, then

  • (1 – x)-n = 1 + nC1x + (n+1)C2x2 + (n+2)C3x3 + ………….
  • (1 + x)-n = 1 – nC1x + (n+1)C2x2(n+2)C3x3 + ………….

→ When |x| < 1
(1 – x)-p/q = 1 + \(\frac{p}{1 !}\left(\frac{x}{q}\right)+\frac{p(p+q)}{2 !}\left(\frac{x}{q}\right)^{2}+\frac{p(p+q)(p+2 q)}{3 !}\left(\frac{x}{q}\right)^{3}\) + …………………∞

→ When |x| < 1
(1 + x)-p/q = 1 – \(\frac{p}{1 !}\left(\frac{x}{q}\right)_{+} \frac{p(p+q)}{2 !}\left(\frac{x}{q}\right)^{2} \quad \frac{p(p+q)(p+2 q)}{3 !}\left(\frac{x}{q}\right)^{3}\) + …………………∞

Binomial Theorem:
Let n be a positive integer and x, a be real numbers, then (x + a)n = nC0.xna° + nC1.xna1 + nC2.xn-1a2 + …………… + nCr.xn-rar + ……….. + nCn.x0an
Proof :
We prove this theorem by u sing the principle of mathematical induction (on n).
When n = 1, (x + a)1 =(x + a)1 = x + a = 1C0x1a°+ 1C1x°a1
Thus the theorem is true for n = 1
Assume that the theorem is true for n = k ≥ 1 (where k is a positive integer). That is
(x+a)k = kC0xk.a0 + kC1xk-2a2 + kC2.xk-2a2 + …+ kCr.xk-r.ar + ………….. + kCx0ak

Now we prove that the theorem is true when n = k + 1 also
(x + a)k+1 = (x + a)(x + a)k
Inter 2nd Year Maths 2A Binomial Theorem Formulas 1
Therefore the theorem is true for n = k + 1
Hence, by mathematical induction, it follows that the theorem is true of all positive integer n

Inter 2nd Year Maths 2A Permutations and Combinations Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 5 Permutations and Combinations to solve questions creatively.

Intermediate 2nd Year Maths 2A Permutations and Combinations Formulas

→ Fundamental principle: If a work can be performed in m different ways and another work can be performed in n different ways, then the two works simultaneously can be performed in mn different ways.

→ If n is a non-negative integer then

  • 0 ! = 1
  • n ! = n (n – 1) ! if n > 0

→ The number of permutations of n dissimilar things taken ‘r at a time is denoted by nPr and nPr = \(\frac{n !}{(n-r) !}\) for 0 ≤ r ≤ n.

Inter 2nd Year Maths 2A Permutations and Combinations Formulas

→ If n, r positive integers and r ≤ n, then

  • nPr = n. n – 1Pr – 1 if r ≥ 1
  • nPr = n.(n – 1) n – 2Pr – 2 if r ≥ 2
  • nPr = n – 1Pr + r. (n – 1)P(r – 1)

→ The number of injections that can be defined from set A into set B is n(B)pn(A) n(A) ≤ n(B)

→ The number of bijections that can be defined from set A into set B having same number of elements with A is n(A)!

→ The number of permutations of1n’ dissimilar things taken ‘r’ at a time.

  • Containing a particular thing is (r) n – 1Pr – 1
  • Not containing a particular thing is n – 1Pr
  • Containing a particular thing in a particular place is n – 1Pr – i.

→ The number of functions that can be defined from set A into set B in [n(B)]n(A)

→ The sum of the r – digited numbers that can be formed using the given ‘n’ distinct non-zero digits (r ≤ n ≤ 9) is (n – 1)P(r – 1) × sum of all n digits × 111 …… 1 (r times)

→ In the above, if ‘0’ is one among the given n digits, then the sum is (n – 1)P(r – 1) × sum of the digits × 111 … 1 (r times) (n – 2)P(r – 2) × sum of the digits × 111 … 1 [(r – 1) times]

→ The number of permutations of n dissimilar things taken r at a time when repetitions are allowed any number of times is nr.

→ The number of circular permutations of n dissimilar things is (n – 1) !

→ In case of hanging type circular permutations like garlands of flowers, chains of beads etc., the number of circular permutations of n things is \(\frac{1}{2}\) [(n – 1) !]

→ If in the given n things, p alike things are of one kind, q alike things are of the second kind, r alike things are of the third kind and the rest are dissimilar, then the number of permutations (of these n things) is \(\frac{n !}{p ! q ! r !}\)

Inter 2nd Year Maths 2A Permutations and Combinations Formulas

→ The number of combinations of n things taken r at a time is denoted by nCr and nCr = \(\frac{n !}{(n-r) ! r !}\) for 0 ≤ r ≤ n and \(\frac{{ }^{n} C_{r}}{{ }^{n} C_{r-1}}=\frac{n-r+1}{r}\) and nPr = r! nCr

→ If n, r are integers and 0 ≤ r ≤ n then ncr = nCr – 1

→ Let n, r, s are integers and 0 ≤ r ≤ n, 0 ≤ s ≤ n. If nCr = nCs then r = s or r + s = n.

→ The number of ways of dividing ‘m + n’ things (m ≠ n) into two groups containing m, n things is (m + n)Cm = (m + n)Cm = \(\frac{(m+n) !}{m ! n !}\)

→ The number of ways of dividing (m + n + p) things (m, n, p are distinct) into 3 groups of m, n, p things is \(\frac{(m+n+p) !}{m ! n ! p !}\).

→ The number of ways of dividing mn things into m equal groups is \(\frac{(m n) !}{(n !)^{m} m !}\)

→ The number of ways if distributing mn things equally to m persons is \(\frac{(m n) !}{(n !)^{m}}\)

→ If p alike things are of one kind, q alike things are of the second kind and r alike things are of the third kind, then the number of ways of selecting one or more things out of them is (p + 1) (q + 1) (r +1) – 1.

→ If m is a positive integer and m = p1α1, p1α2 …… pkαk where p1, p2 …… pk are distinct primes and α1, α2, …. αk are non-negative integers, then the number of divisors of m is (α1 + 1) (α2 + 1) ……… (αk + 1). [This includes 1 and m].

Inter 2nd Year Maths 2A Permutations and Combinations Formulas

→ The total number of combinations of n different things taken any number of times is 2n.

→ The total number of combinations of n different things taken one or more at a timers 2n – 1.

→ The number of diagonals in a regular polygon of n sides is \(\frac{n(n-3)}{2}\)

→ Permutations are arrangements of things taken some or all at a time.

→ In a permutation, order of the things is taken into consideration.

npr represents the number of permutations (without repetitions) of n dissimilar things taken r at a time.

→ Fundamental Principle: If an event is done in ‘m’ ways and another event is done in ‘n’ ways, then the two events can be together done in mn ways provided the events are independent.

npr = \(\frac{n !}{(n-r) !}\) = n(n – 1)(n – 2) …………. (n – r + 1)

np1 = n, np2 = n(n-1), np3 = n(n-1)(n-2).

npr = n!

→ \(\frac{{ }^{\mathrm{n}} \mathrm{p}_{\mathrm{r}}}{{ }^{\mathrm{n}} \mathrm{p}_{\mathrm{r}-1}}\)npn = n!

n+1pr = r. npr-1 + npr

npr = r. n-1pr-1 + npr

npr = r.n-1pr-1 + n-1pr

→ The number of permutations of n things taken r at a time containing a particular thing is r × n-1pr-1

→ The number of permutations of n things taken r at a time not containing a particular thing is n-1pr

  • The number of permutations of n things taken r at a time allowing repetitions is nr.
  • The number of permutations of n things taken not more than r at a time allowing repetitions is \(\frac{n\left(n^{\mathrm{r}}-1\right)}{(n-1)}\)

→ The number of permutations of n things of which p things are of one kind and q things are of another kind etc., is \(\frac{n !}{p ! q ! \ldots \ldots \cdots}\)

→ The sum of all possible numbers formed out of all the ‘n’ digits without zero is (n-1)! (sum of all the digits) (111 ……….. n times).

→ The sum of all possible numbers formed out of all the ‘n’ digits which includes zero is [(n -1)! (sum of all the digits) (111 …………… n times)] – [( n – 2)! (sum of all the digits)(111 ………….. (n -1) times]

→ The sum of all possible numbers formed by taking r digits from the given n digits which do not include zero is n-1pr-1 (sum of all the digits)(111 …………… r times).

→ The sum of all possible numbers formed by taking r digits from the given n digits which include zero is n-1pr-1(sum of all the digits)(111 ……………….. r times) – n-2pr-2(sum of all the digits)(111 ……………….. (r-1) times).

  • The number of permutations of n things when arranged round a circle is (n -1)!
  • In case of necklace or garland number of circular permutations is \(\frac{(n-1) !}{2}\)

Inter 2nd Year Maths 2A Permutations and Combinations Formulas

→ Number of permutations of n things taken r at a time in which there is at least one repetition is nrnpr.

→ The number of circular permutations of ‘n’ different things taken ‘r’ at a time is \(\frac{{ }^{n} \mathrm{P}_{\mathrm{r}}}{\mathrm{r}}\)

Inter 2nd Year Maths 2A Theory of Equations Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 4 Theory of Equations to solve questions creatively.

Intermediate 2nd Year Maths 2A Theory of Equations Formulas

→ If n is a non-negative integer and a0, a1, a2, ……….. an are real or complex numbers and a0 ≠ 0, then the expression f(x) = a0xn + a1xn – 1 + a2xn – 2 + ……. + an is called a polynomial in x of degree n.

→ f(x) = a0xn + a1xn – 1 + a2xn – 2 + ……. + an = 0 is called a polynomial equation in x of degree n (a0 ≠ 0). Every non-constant polynomial equation has atleast one root.

→ If f(α) = 0 then α is called a root of the equation f(x) = 0.

→ If f(α) = 0 then (x – α) is a factor of f(x).

Inter 2nd Year Maths 2A Theory of Equations Formulas

Relation between roots and coefficients of an equation:
→ If α β γ are the roots of x3 + p1x2 + p2x + p3 = 0 then sum of the roots s1 = α + β + γ = – p1.
Sum of the products of two roots taken at a time s2 = αβ + βγ + γα = p2.
Product of all the roots, s3 = αβγ = – p3.

→ If α, β, γ, δ are the roots of x4 + p1x3 + p2x2 + p3x + p4 = 0 then sum of the roots s1 = α + β + γ + δ = – p1.
Sum of the products of roots taken two at a time
s2 = αβ + αγ + αδ + βγ + βδ + γδ = p2.
Sum of the products of roots taken three at a time .
s3 = αβγ + βγδ + γδα + δαβ = – p3.
Product of the roots, s4 = αβγδ = p4.

→ For a cubic equation, when the roots are

  • In A.P., then they are taken as a – d, a, a + d.
  • In G.P., then they are taken as \(\frac{a}{r}\), a, ar.
  • In H.P., then they are taken as \(\frac{1}{a-d}, \frac{1}{a^{\prime}}, \frac{1}{a+d}\).

→ For a bi quadratic equation, if the roots are

  • In A.P., then they are taken as a – 3d, a – d, a + d, a + 3d.
  • In C.P., then they are taken as \(\frac{1}{a-3 d}, \frac{1}{a-d}, \frac{1}{a+d}, \frac{1}{a+3 d}\).

→ In an equation with real coefficients, imaginary roots occur in conjugate pairs.

→ In an equation with rational coefficients, irrational roots occur in pairs of conjugate surds.

→ The equation whose roots are those of the equation f(x) = 0 with contrary signs is f(- x) = 0.

→ The equation whose roots are multiplied by kfa 0) of those of the proposed equation f(x) = 0 is f \(\left(\frac{x}{k}\right)\) = 0.

→ The equation whose roots are reciprocals of the roots of f(x) = 0 is f \(\left(\frac{1}{x}\right)\) = 0.

→ The equation whose roots are exceed by h than those of f(x) = 0 is f(x – h) = 0.

→ The equation whose roots are diminished by h than those of f(x) 0 is f(x + h) = 0.

→ The equation whose roots are the square of the roots of f(x) = 0 is obtained by eliminating square root from f(√x) = 0.

Inter 2nd Year Maths 2A Theory of Equations Formulas

→ If f(x) = p0xn + p1xn – 1 + p2xn – 2 + ……. + pn = 0 then to eliminate the second term,
f(x) = 0 can be transformed to f(x + h) = 0 where h = \(\frac{-p_{1}}{n \cdot p_{0}}\).

→ If an equation is unaltered by changing x into \(\frac{1}{x}\) then it is a reciprocal equation.

→ A reciprocal equation f(x) = p0xn + p1xn – 1 + …… + pn = 0 is said to be a reciprocal equation of first class pi = pn – i for all i.

→ A reciprocal equation f(x) = p0xn + p1xn – 1 + …… + pn = 0 is said to be a reciprocal equation of second class if pi = – pn – i for all i.

→ For an odd degree reciprocal equation of class one, – 1 is a root and for an odd degree reciprocal equation of class two, 1 is a root.

→ For an even degree reciprocal equation of class two, 1 and – 1 are roots.

→ If f(x) = 0 is an equation of degree ‘n’ then to eliminate rth term, f(x) = 0 can be transformed to f(x + h) = 0 where h is a constant such that f(n – r + 1)(h) = 0 i.e.,(n – r + 1)th derivative of f(h) is zero.

→ Every nth degree equation has exactly n roots real or imaginary.

→ Relation between, roots and coefficients of an equation.

(i) If α, β, γ are the roots of x3 + p1x2 + p2x + p3 = 0 the sum of the roots s1 = α + β + γ = -p1.
Sum of the products of two roots taken at a time s2 = αβ + βγ + γα = -p2
Product of all the roots, s3 = αβγ= – p3.

(ii) If α, β, γ, δ are the roots of x4 + p1x3 + p2x2 + p3x + p4 = 0 then

  • Sum of the roots s1 = a+P+y+S = -p1.
    s2 = αβ + αγ + αδ + βα + βδ + γδ = p2.
  • Sum of the products of roots taken three at a time
    s3 = αβγ + βγδ + γδα + δαβ = – p3.
  • Product of the roots, s4 = αβγδ = p4

→ For the equation xn + p1xn-1 + p2xn-2 + ……… + pn = 0

  • Σ α2 = p12 – 2p2
  • Σ α3 = -p13 + 3p1p2 – 3p3
  • Σ α4 =p14 – 4p12p2 + 2p22 + 4p1p3 – 4p4
  • Σ α2β = 3p3 – p1p2
  • Σ α2βγ = p1p3 – 4p4

Note: For the equation x3 + p1x2 + p2x + p3 = 0 Σα2β2 — p2 -2p1p3

→ To remove the second term from a nth degree equation, the roots must be diminished by \(\frac{-\mathrm{a}_{1}}{\mathrm{na}_{0}}\) and the resultant equation will not contain the term with xn-1.

→ If α1 , α2 ………………. , αn are the roots of f(x) = 0, the equation

  • Whose roots are \(\) is f\(\left(\frac{1}{x}\right)\) = 0
  • Whose roots are kα1, kα2 …,kαn is f\(\left(\frac{x}{h}\right)\) = 0
  • Whose roots are α1 – h, α2 – h, …. αn – h is f(x + h) = 0.
  • Whose roots are α1 + h, α2 + h, ………….. αn + h is f(x – h) = 0
  • Whose roots are α12, α22…. α12 is f (f√y) = 0

→ In any equation with rational coefficients, irrational roots occur in conjugate pairs.

→ In any equation with real coefficients, complex roots occur in conjugate pairs.

Inter 2nd Year Maths 2A Theory of Equations Formulas

→ If α is r – multiple root of f(x) = 0, then a is a (r – 1) – multiple root of f1(x) = 0 and (r-2) – Multiple root of f 11(x) = 0 and non multiple root of fr-1(x) =0.

→ If f(x) = xn + p1xn-1 + …………. + pn-1x + pn and f(a) and f(b) are of opposite sign, then at least
one real root of f(x) =0 lies between a and b.

(a) For a cubic equation, when the roots are

  • In A.P., then they are taken as a – d, a, a + d
  • In G.P., then are taken as \(\frac{a}{r}\), a, ar
  • In H.P., then they are taken as \(\frac{1}{a-d}, \frac{1}{a}, \frac{1}{a+d}\)

(b) For a bi quadratic equation, if the roots are

  • In A.P., then they are taken as a – 3d, a + d, a + 3d
  • In G.P., then they are \(\frac{a}{d^{3}}, \frac{a}{d}\), ad, ad3
  • In H.P., then they are taken as \(\frac{1}{a-3 d}, \frac{1}{a-d}, \frac{1}{a+d}, \frac{1}{a+3 d}\)

→ It an equation is unaltered by changing x into \(\frac{1}{x}\), then it is a reciprocal equation.

  • A reciprocal equation f (x) = p0xn + p1xn-1 + ……………….. + pn = 0 is said to be a reciprocal equation of first class pi = pn-i for all i.
  • A reciprocal equation f (x) = p0xn + p1xn-1 + ……………….. + pn = 0 = 0 is said to be a reciprocal equation of second class pi = pn-i for all i.
  • For an odd degree reciprocal equation of class one, -1 is a root and for an odd degree reciprocal equation of class two, 1 is a root.
  • For an even degree reciprocal equation of class two, 1 and -1 are roots.

→ If f(x) = 0 is an equation of degree ‘n’ then to eliminate rth term, .f(x) = 0 can be transformed to f(x+h) = 0 where h is a constant such that f(n-r+1)(h) =0 i.e., (n – r + 1)th derivative of f(h) is zero.

Inter 2nd Year Maths 2A Quadratic Expressions Formulas

Use these Inter 2nd Year Maths 2A Formulas PDF Chapter 3 Quadratic Expressions to solve questions creatively.

Intermediate 2nd Year Maths 2A Quadratic Expressions Formulas

→ If a, b, c are real or complex numbers and a ≠ 0, then the expression ax2 + bx + c is called a quadratic expression in the variable x.
Eg: 4x2 – 2x + 3

→ If a, b, c are real or complex numbers and a ≠ 0, then ax2 + bx + c = 0 is called a quadratic equation in x.
Eg: 2x2 – 5x + 6 = 0

Inter 2nd Year Maths 2A Quadratic Expressions Formulas

→ A complex number α is said to be a root or solution of the quadratic equation ax2 + bx + c = 0 if aα2 + bα + c = 0

→ The roots of ax2 + bx + c = 0 are \(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)

→ If α, β are roots of ax2 + bx + c = 0, then α + β = \(\frac{-b}{a}\) and αβ = \(\frac{C}{a}\)

→ The equation of whose roots are α, β is x2 – (α + β)x + αβ = 0

→ Nature of the roots: ∆ = b2 – 4ac is called the discriminant of the quadratic equation ax2 + bx + c = 0. Let α, β be the roots of the quadratic equation ax2 + bx + c = 0
Case 1: If a, b, c are real numbers, then

  • ∆ = 0 ⇔ α = β = \(\frac{-b}{2 a}\) (a repeated root or double root)
  • ∆ > 0 ⇔ α and β are real and distinct.
  • ∆ < 0, ⇔ α and β are non- real complex numbers conjugate to each other.

Case 2: If a, b, c are rational numbers, then

  • ∆ = 0 ⇔ α and β are rational and equal (ei) α = \(\frac{-b}{2 a}\), a double root or a repeated root.
  • ∆ > 0 and is a square of a rational number ⇔ α and β are rational and distinct.
  • ∆ > 0 but not a square of a rational number ⇔ α and β are conjugate surds.
  • ∆ < 0, ⇔ α and β are non- real ⇔ α and β are non-real con conjugate complex numbers.

→ Let a, b and c are rational numbers, α and β be the roots of the equations ax2 + bx + c = 0. Then

  • α, β are equal rational numbers if ∆ = 0.
  • α, β are distinct rational numbers if ∆ is the square of a non zero rational numbers.
  • α, β are conjugate surds if ∆ > 0 and ∆ is not the square of a nonzero square of a rational number.

→ If a1x2 + b1x + c1 = 0, a2x2 + b2x + c2 = 0 have two same roots, then \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)

→ If α, β are roots of ax2 + bx + c = 0,

  • the equation whose roots are \(\frac{1}{\alpha}, \frac{1}{\beta}\) is f \(\left(\frac{1}{x}\right)\) = 0. If c ≠ 0 (ie) αβ ≠ 0
  • the equation whose roots are α + k, β + k is f(x – k) = 0
  • the equation whose roots are kα and kβ is f\(\left(\frac{x}{k}\right)\) = 0
  • the equation whose roots are equal but opposite in sign is f(-x) = 0
    (ie) the equation whose roots are – α, – β is f(-x) = 0.

→ If the roots of ax2 + bx + c = 0 are complex roots then for x ∈ R, ax2 + bx + c and ‘a’ have the same sign.

→ If α and β (α < β) are the roots of ax2 + bx + c = 0 then

  • ax2 + bx + c and ‘a’ are of opposite sign when α < x < β
  • ax2 + bx + c and ‘a’ are of the same sign if x < α or x > β.

→ Let f(x) = ax2 + bx + c be a quadratic function

  • If a > 0 then f(x) has minimum value at x = \(\frac{-b}{2 a}\) and the minimum value is given by \(\frac{4 a c-b^{2}}{4 a}\)
  • If a < 0 then f(x) has maximum value at x = \(\frac{-b}{2 a}\) and the maximum value is given by \(\frac{4 a c-b^{2}}{4 a}\)

Inter 2nd Year Maths 2A Quadratic Expressions Formulas

→ A necessary and sufficient condition for the quadratic equation a1x2 + b1x + c1 = 0 and a2x2 + b2x + c2 = 0 to have a common root is (c1a2 – c2a1)2 = (a1b2 – a2b1) (b1c2 – b2c1).

→ If a1b2 – a2b1 = 0 then common root of a1x2 + b1x + c1 = 0, a2x2 + b2x + c2 = 0 is \(\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}\).

→ The standard form of a quadratic ax2 + bx + c = 0 where a, b, c ∈ R and a ≠ 0

→ The roots of ax2 + bx + c = 0 are \(\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)

→ For the equation ax2 + bx + c = 0, sum of the roots = \(-\frac{b}{a}\), product of the roots = \(\frac{c}{a}\).

→ If the roots of a quadratic are known, the equation is x2 – (sum of the roots)x +(product of the roots)= 0

→ “Irrational roots” of a quadratic equation with “rational coefficients” occur in conjugate pairs. If p + √q is a root of ax2 + bx + c = 0, then p – √q is also a root of the equation.

→ “Imaginary” or “Complex Roots” of a quadratic equation with “real coefficients” occur in conjugate pairs. If p + iq is a root of ax2 + bx + c = 0. Then p – iq is also a root of the equation.

→ Nature of the roots of ax2 + bx + c = 0

Nature of the RootsCondition
Imagineb2 – 4ac < 0
Equalb2 – 4ac = 0
Realb2 – 4ac ≥ 0
Real and differentb2 – 4ac > 0
Rationalb2 – 4ac is a perfect square a, b, c being rational
Equal in magnitude and opposite in signb = 0
Reciprocal to each otherc = a
Both positiveb has a sign opposite to that of a and c
Both negativea, b, c all have same sign
Opposite signa, c are of opposite sign

→ Two equations a1x2 + b1x + c1 = 0, a2x2 + b2x + c2 = 0 have exactly the same roots if \(\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}\)

→ The equations a1x2 + b1x + c1 = 0, a2x2 + b2x + c2 = 0 have a common root, if (c1a2 – c2a1)2 = (a1b2 – a2b1)(b1c2 – b2c1) and the common root is \(\frac{c_{1} a_{2}-c_{2} a_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) if a1b2 ≠ a2b1

→ If f(x) = 0 is a quadratic equation, then the equation whose roots are

  • The reciprocals of the roots of f(x) = 0 is f\(\left(\frac{1}{x}\right)\) = 0
  • The roots of f(x) = 0, each ‘increased’ by k is f(x – k) = 0
  • The roots of f(x) = 0, each ‘diminished’ by k is f(x + k) = 0
  • The roots of f(x) = 0 with sign changed is f(-x) = 0
  • The roots of f(x) = 0 each multiplied by k(≠0) is f\(\left(\frac{x}{k}\right)\) = 0

Inter 2nd Year Maths 2A Quadratic Expressions Formulas

→ Sign of the expression ax2 + bx + c = 0

  • The sign of the expression ax2 + bx + c is same as that of ‘a’ for all values of x if b2 – 4ac ≤ 0 i.e. if the roots of ax2 + bx + c = 0 are imaginary or equal.
  • If the roots of the equation ax2 + bx + c = 0 are real and different i.e b2 – 4ac > 0, the sign of the expression is same as that of ‘a’ if x does not lie between the two roots of the equation and opposite to that of ‘a’ if x lies between the roots of the equation.

→ The expression ax2 + bx + c is positive for all real values of x if b2 – 4ac < 0 and a > 0.

→ The expression ax2 + bx + c has a maximum value when ‘a’ is negative and x = –\(\frac{\mathrm{b}}{2 \mathrm{a}}\). Maximum value of the expression = \(\frac{4 a c-b^{2}}{4 a}\)

→ The expression ax2 + bx + c has a maximum value when ‘a’ is positive and x = –\(\frac{\mathrm{b}}{2 \mathrm{a}}\). Minimum value of the expression = \(\frac{4 a c-b^{2}}{4 a}\)

Theorem 1:
If the roots of ax2 + bx + c = 0 are imaginary, then for x ∈ R , ax2 + bx + c and a have the same sign.
Proof:
The root are imaginary
b2 – 4ac < 0 4ac – b2 > 0
\(\frac{a x^{2}+b x+c}{a}=x^{2}+\frac{b}{a} x+\frac{c}{a}=\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}}=\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\)
∴ For x ∈ R, ax2 + bx + c = 0 and a have the same sign.

Theorem 2.
If the roots of ax2 + bx + c = 0 are real and equal to α = \(\frac{-b}{2 a}\), then α ≠ x ∈ R ax2 + bx + c and a will have same sign.
Proof:
The roots of ax2 + bx + c = 0 are real and equal
⇒ b2 = 4ac ⇒ 4ac – b2 = 0
\(\frac{a x^{2}+b x+c}{a}\) = x + \(\frac{b}{a}\)x + \(\frac{c}{a}\)
= \(\left(x+\frac{b}{2 a}\right)^{2}+\frac{c}{a}-\frac{b^{2}}{4 a^{2}}\)
= \(\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a^{2}}\)
= \(\left(x+\frac{b}{2 a}\right)^{2}\) > 0 for x ≠ \(\frac{-b}{2 a}\) = α
For α ≠ x ∈ R, ax2 + bx + c and a have the same sign.

Theorem 3.
Let be the real roots of ax2 + bx + c = 0 and α < β. Then
(i) x ∈ R, α < x< β ax2 + bx + c and a have the opposite signs
(ii) x ∈ R, x < α or x> β ax2 + bx + c and a have the same sign.
Proof:
α, β are the roots of ax2 + bx + c = 0
Therefore, ax2 + bx + c = a(x – α)(x – β)
\(\frac{a x^{2}+b x+c}{a}\) = (x – α)(x – β)

(i) Suppose x ∈ R, α < x < β
⇒ x < α < β then x – α < 0, x – β < 0 ⇒ (x – α)(x – β) > 0 ⇒ \(\frac{a x^{2}+b x+c}{a}\) > 0
⇒ ax2 + bx + c, a have a same sign

(ii) Suppose x ∈ R, x > β, x > β > α then x – α > 0, x – β > 0
⇒ (x – α)(x – β) > 0 ⇒ \(\frac{a x^{2}+b x+c}{a}\) > 0
⇒ ax2 + bx + c, a have same sign
∴ x ∈ R, x < α or x > β ⇒ ax2 + bx + c and a have the same sign.