SCERT AP 10th Class Maths Textbook Solutions Chapter 6 శ్రేఢులు Exercise 6.1 Textbook Exercise Questions and Answers.

AP State Syllabus 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

ప్రశ్న 1.
ఈ క్రింది సంఘటనలలో ఏ సంఘటనలో ఏర్పడే సంఖ్యల జాబితా అంకశ్రేఢి అవుతుంది ? ఎందుకు ?
(i) ఒక టాక్సీకి మొదటి గంట ప్రయాణానికి ₹ 20 చొప్పున తరువాత ప్రతి గంటకు ₹ 8 చొప్పున చెల్లించవలసి ఉన్న ప్రతి కిలోమీటరుకు చెల్లించవలసిన సొమ్ము.
(ఇచ్చిన సమస్య స్పష్టంగా లేదు. టాక్సీ అద్దె గంటలకు ఇవ్వబడినది. కాని చెల్లించాల్సిన సొమ్మును కిలో మీటరుకు ఇవ్వడం జరిగినది).
సరైన సమస్య : ఒక టాక్సీ మొదటి కిలోమీటరు ప్రయాణానికి ₹ 20 లు చొప్పున తరువాత ప్రతి కిలోమీటరుకు ₹8 లు చొప్పున చెల్లించవలసి వున్న ప్రతి కిలోమీటరుకు చెల్లించవలసిన సొమ్ము.
సాధన.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.1 1

సంఖ్యల జాబితా : 20, 28, 36, 44, 52, 60

సామాన్యభేదము

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.1 2

ప్రతి సందర్భంలోను సామాన్యభేదం సమానము. కావున ఏర్పడే సంఖ్యల జాబితా ఒక అంకశ్రేణి (A.P.) అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

(ii) ఒక వాక్యూమ్ పంపు సిలిండరులో ఉండే గాలి నుంచి 1/4 వంతు తీసివేయును. అయిన ప్రతిసారీ సిలెండరులో మిగిలి వుండే గాలి పరిమాణము.
సాధన.
సిలెండరులో గల గాలి పరిమాణము = 1 అనుకొందాం.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.1 3

సంఖ్యల జాబితా 1, \(\frac{3}{4}\), \(\frac{9}{16}\), \(\frac{27}{64}\), …………..

సామాన్యభేదం d = a2 – a1 = \(\frac{3}{4}\) – 1
= \(\frac{3-4}{4}=-\frac{1}{4}\)

= a3 – a2 = \(\frac{9}{16}\) – \(\frac{3}{4}\)
= \(\frac{9-12}{16}=\frac{-3}{16}\)
అన్ని సందర్భాలలో సామాన్యభేదం సమానంగా లేదు. కావున ఈ జాబితా అంకశ్రేణి కాదు.

(iii) ఒక బావిని తవ్వడానికి మొదట మీటరుకు ₹ 150 వంతున ఆపై ప్రతి మీటరుకు ₹ 50 వంతున చెల్లించాలి. అయిన ప్రతి మీటరుకు చెల్లించవలసిన సొమ్ము.
సాధన.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.1 4

సంఖ్యల జాబితా 150, 200, 250, 300, 350,

సామాన్యభేదం

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.1 5

అన్ని సందర్భాలలోను సామాన్య భేదం సమానము. కావున ఈ సంఖ్యల జాబితా అంకశ్రేఢి (A.P.) అవుతుంది.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

(iv) ఒక బ్యాంకులో ₹ 10000 లను సంవత్సరానికి 8 శాతం చక్రవడ్డీ ప్రకారం పొదుపు చేసిన ప్రతి సంవత్సరము చివరలో ఖాతాలో ఉండే సొమ్ము.
సాధన.
ప్రారంభంలో ఖాతాలో గల సొమ్ము (P) = ₹10,000 వడ్డీరేటు (R) = 8%.

AP Board 10th Class Maths Solutions Chapter 6 శ్రేఢులు Exercise 6.1 6

సంఖ్యల జాబితా 10,000, 10,800, 11,664, 12597.12, …………….
సామాన్యభేదం d = a2 – a1 = 10,800 – 10,000 = 800
a3 – a2 = 11,664 – 10,800 = 864
a4 – a3 = 12,597.12 – 11,664 = 933.12
అన్ని సందర్భాలలోనూ సామాన్య భేదం సమానంగా లేదు. కావున ఈ జాబితా అంకశ్రేణి కాదు.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

ప్రశ్న 2.
అంకశ్రేఢుల యొక్క మొదటి పదము a మరియు సామాన్యభేదం d. విలువలు క్రింద ఇవ్వబడినవి. అయిన శ్రేణిలోని మొదటి నాలుగు పదాలను కనుగొనుము.
(i) a = 10, d = 10
సాధన.
మొదటి పదం a1 = a = 10
రెండవ పదం a2 = 10 + 10 = 20
మూడవ పదం a3 = 20 + 10 = 30
నాల్గవ పదం a4 = 30 + 10 = 40

(ii) a = – 2, d = 0
సాధన.
మొదటి పదం a1 = a = – 2
రెండవ పదం a2 = – 2 + 0 = – 2
మూడవ పదం a3 = – 2 + 0 = – 2
నాల్గవ పదం a4 = – 2 + 0 = – 2

(iii) a = 4, d = – 3
సాధన.
మొదటి పదం a1 = a = 4
రెండవ పదం a2 = 4 + (- 3) = 1
మూడవ పదం a3 = 1 + (- 3) = – 2
నాల్గవ పదం a4 = – 2 + (- 3) = – 5

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

(iv) a = – 1, d = 1/2
సాధన.
మొదటి పదం a1 = a = – 1
రెండవ పదం a2 = – 1 + \(\frac{1}{2}\) = \(-\frac{1}{2}\)
మూడవ పదం a3 = – \(\frac{1}{2}\) + \(\frac{1}{2}\) = 0
నాల్గవ పదం a4 = 0 + \(\frac{1}{2}\) = \(\frac{1}{2}\)

(v) a = – 1.25, d = – 0.25
సాధన.
మొదటి పదం a1 = a = – 1.25
రెండవ పదం a2 = – 1.25 + (- 0.25) = – 1.50
మూడవ పదం a3 = (- 1.50) + (- 0.25) = – 1.75
నాల్గవ పదం a4 = (- 1.75) + (- 0.25) = – 2.00 = – 2

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

ప్రశ్న 3.
క్రింద ఇవ్వబడిన అంకశ్రేఢులకు మొదటి పదమును, సామాన్య భేదంను కనుగొనుము.
(i) 3, 1, -1, -3, . . .
సాధన.
మొదటి పదం a = 3
సామాన్యభేదం d = a2 – a1 = 1 – 3 = – 2
[∵ d = ak+1 – ak]

(ii) – 5, – 1, 3, 7,…
సాధన.
మొదటి పదం a = – 5
సామాన్య భేదం d = a2 – a1 = (- 1) – (- 5)
= – 1 + 5 = 4.

(iii) \(\frac{1}{3}\), \(\frac{5}{3}\), \(\frac{9}{3}\), \(\frac{13}{3}\), …………
సాధన.
మొదటి పదం a = \(\frac{1}{3}\)
సామాన్యభేదం d = a2 – a1
= \(\frac{5}{3}\) – \(\frac{1}{3}\)
= \(\frac{4}{3}\)

(iv) 0.6, 1.7, 2.8, 3.9, ………….
సాధన.
మొదటి పదం a = 0.6
సామాన్యభేదం d = a2 – a1
= 1.7 – 0.6 = 1.1.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

ప్రశ్న 4.
క్రింది జాబితాలలో ఏవి అంకశ్రేఢులు ? ఒకవేళ అంకశ్రేణి అయిన సామాన్య భేదం dను, తరువాత వచ్చే మూడు పదాలను కనుగొనుము.
(i) 2, 4, 8, 16, ……….
సాధన.
a2 – a1 = 4 – 2 = 2
a3 – a2 = 8 – 4 = 4
a4 – a3 = 16 – 8 = 8
…………………………………..
ప్రతి సందర్భంలోనూ సామాన్యభేదం సమానంగా లేదు. కావున ఈ జాబితా అంకశ్రేణి కాదు.

(ii) 2, \(\frac{5}{2}\), 3, \(\frac{7}{2}\), …………………..
సాధన.
a2 – a1 = \(\frac{5}{2}\) – 2
= \(\frac{5-4}{2}=\frac{1}{2}\)

a3 – a2 = 3 – \(\frac{5}{2}\)
= \(\frac{6-5}{2}=\frac{1}{2}\)

a4 – a3 = \(\frac{7}{2}\) – 3
= \(\frac{7-6}{2}=\frac{1}{2}\)
…………………………………………………………………………………
సామాన్యభేదం ప్రతి సందర్భంలోను సమానం. కావున ఈ జాబితా, అంకశ్రేడి (A. P.) అవుతుంది.
సామాన్యభేదం d = \(\frac{1}{2}\)
∴ తరువాత వచ్చే మూడు పదాలు
\(\frac{7}{2}+\frac{1}{2}\) = \(\frac{1}{2}\) = 4

4 + \(\frac{1}{2}\) = \(\frac{8+1}{2}=\frac{9}{2}\)

\(\frac{9}{2}+\frac{1}{2}\) = \(\frac{10}{2}\) = 5

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

(iii) – 1.2, – 3.2, – 5.2, – 7.2, ………….
సాధన.
a2 – a1 = (- 3.2) – (- 1.2) = – 3.2 + 1.2 = – 2
a3 – a2 = (- 5.2) – (- 3.2) = – 5.2 + 3.2 = -2
a4 – a3 = (- 7.2) – (- 5.2) = – 7.2 + 5.2 = – 2
సామాన్యభేదం అన్ని సందర్భాలలో సమానము.
కావున ఈ జాబితా అంకశ్రేఢి (A. P.) అవుతుంది.
సామాన్య భేదం d = – 2
∴ తరువాత వచ్చే మూడు పదాలు
– 7.2 + (- 2) = – 9.2
(- 9.2) + (- 2) = – 11.2
– 11.2 + (-2) = – 13.2.

(iv) – 10, – 6, – 2, 2, …………..
సాధన.
a2 – a1 = – 6 – (- 10) = – 6 + 10 = 4
a3 – a2 = – 2 -(- 6) = – 2 + 6 = 4
a4 – a3 = 2 – (-2) = 2 + 2 = 4
ప్రతి సందర్భంలోనూ సామాన్యభేదం సమానము.
కావున ఈ జాబితా అంకశ్రేణి (A.P) అవుతుంది.
సామాన్యభేదం d = 4
∴ తరువాత వచ్చే మూడు పదాలు
2 + 4 = 6
6 + 4 = 10
10 + 4 = 14.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

(v) 3, 3 + √2, 3 + 2√2, 3 + 3√2 ……….
సాధన.
a2 – a1 = 3 + √2 – 3 = √2
a3 – a2 = 3 + 2√2 – (3 + √2)
= 3 + 2√2 – 3 – √2 = √2
a4 – a3 = 3 + 2√2 – (3 – 2√2)
= 3 + 3√2 – 3 – 2√2 = √2
…………………………………..
ప్రతి సందర్భంలోనూ సామాన్యభేదం సమానము. కావున ఈ జాబితా అంకశ్రేణి (A.P) అవుతుంది. సామాన్యభేదం
d = √2
∴ తరువాత వచ్చే మూడు పదాలు
– 3 + 3√2 + √2 = 3 + 4√2
3 + 4√2 + √2 = 3 + 5√2
3 + 5√2 +√2 = 3 + 6√2.

(vi) 0.2, 0.22, 0.222, 0.2222, ………………
సాధన.
a2 – a1 = 0.22 – 0.2 = 0.02
a3 – a2 = 0.222 – 0.22 = 0.002
a4 – a3 = 0.2222 – 0.222 = 0.0002
ప్రతి సందర్భంలోను ak + 1 – ak సమానము కాదు.
కావున ఈ జాబితా ఒక అంకశ్రేణి (A.P) ని సూచించదు.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

(vii) 0, – 4, – 8, – 12, ……….
సాధన.
a2 – a1 = – 4 – 0 = – 4
a3 – a2 = – 8 – (- 4) = – 8 + 4 = -4
a4 – a3 = – 12 – (- 8) = – 12 + 8 = – 4
………………………………………………………………………..
…………………………………………………………………………
ప్రతి సందర్భంలోను ak + 1 – ak, సమానము,
కావున ఈ జాబితా ఒక అంకశ్రేణి (A.P.) అవుతుంది.
సామాన్యభేదం d = – 4
∴ తరువాత వచ్చే మూడు పదాలు
– 12 + (- 4) = – 16
– 16 + (- 4) = – 20
– 20 + (- 4) = – 24.

(viii) \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), …………
సాధన.
a2 – a1 = \(-\frac{1}{2}\) – (\(-\frac{1}{2}\)) = 0
a3 – a2 = 0
a4 – a3 = 0
……………………………………………………….
ప్రతి సందర్భంలోను ak+1 – ak, సమానము.
కావున ఈ జాబితా ఒక అంకశ్రేణి (A.P.) అవుతుంది.
సామాన్యభేదం d = 0
∴ తరువాత వచ్చే మూడు మాసాలు \(-\frac{1}{2}\), \(-\frac{1}{2}\), \(-\frac{1}{2}\), …………

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

(ix) 1, 3, 9, 27, ……………..
సాధన.
a2 – a1 = 3 – 1 = 2
a3 – a2 = 9 – 3 = 6
a4 – a3 = 27 – 9 = 18
………………………………………………….
ప్రతి సందర్భంలోను ak + 1 – ak, సమానము కాదు.
కావున ఈ జాబితా ఒక అంకశ్రేణి (A.P.) కాదు.

(x) a, 2a, 3a, 4a, ……………….
సాధన.
a2 – a1 = 2a – a = a
a3 – a2 = 3a-2a = a
a4 – a3 = 4a – 3a = a
……………………………………………………………..
ప్రతి సందర్భంలోను ak + 1 – ak సమానము.
కావున ఈ జాబితా ఒక అంకశ్రేఢి (A.P.) అవుతుంది. సామాన్యభేదం d = a
∴ తరువాత వచ్చే మూడు పదాలు 5a, 6a, 7a.

AP Board 10th Class Maths Solutions 6th Lesson శ్రేఢులు Exercise 6.1

(xi) a, a2, a3, a4 ………..
సాధన.
a2 – a1 = a2 – a = a (a – 1)
a3 – a2 = a3 – a2 = a2 (a – 1)
a4 – a3 = a4 – a3 = a3 (a – 1)
……………………………………………………………….
ప్రతి సందర్భంలోను ak + 1 – ak సమానము కాదు.
కావున ఈ జాబితా ఒక అంకశ్రేణిని (A.P.) కాదు.

(xii) √2, √8, √18, √32, ……………….
సాధన.
మొదటి పద్ధతి :
a2 – a1 = √8 – √2 = 2√2 – √2 = √2
a3 – a2 = √18 – √8 = 3√2 – 2√2 = √2
[∵ √8 = √4 × √2 = 2√2
√18 = √9 × √2 = 3√2
√32 = √16 × √2 = 4√2]
a4 – a3 = √32 – √18 = 4√2 – 3√2 = √2
………………………………………………………
∵ ప్రతి సందర్భంలోను ak + 1 – ak సమానము. కావున ఈ జాబితా ఒక అంకశ్రేఢి (A. P.) అవుతుంది.
సామాన్యభేదం d = √2
∴ తరువాత మూడు పదాలు √32 + √2 = 4√2
= 5√2 = \(\sqrt{25 \times 2}\) = √50
√50 + √2 = 5√2 + √2
= 6√2 = \(\sqrt{36 \times 2}\) = √72
√72 + √2 = 6√2 + √2
= 7√2 = \(\sqrt{49 \times 2}\) = √98.

రెండవ పద్ధతి :
ఇచ్చిన జాబితా √2, √8, √18, √32, …………….
= √2, 2√2, 3√2, 4√2 …………….
√8 = \(\sqrt{4 \times 2}\) = 2√2
√18 = \(\sqrt{9 \times 2}\) = 3√2
√32 = \(\sqrt{16 \times 2}\) = 4√2
∴ a2 – a1 = 2√2 – √2 = √2
a3 – a2 = 3√2 – 2√2 = √2
a4 – a3 = 4√2 – 3√2 = √2
అన్ని సందర్భాలలోను ak + 1 – ak సమానము.
కావున ఈ జాబితా ఒక అంకశ్రేణి (A.P.) అవుతుంది.
సామాన్యభేదం d = √2
తరువాత మూడు పదాలు 4√2 + √2 = 5√2 = \(\sqrt{25 \times 2}\) =√50
5√2 + √2 = 6√2 = \(\sqrt{36 \times 2}\)2 = √72
6√2 + √2 = 7√2 = \(\sqrt{49 \times 2}\) =√98 .

(xiii) √3, √6, √9, √12, ………….
సాధన.
a2 – a1 = √6 – √3 = √3(√2 – 1)
a3 – a2 = √9 – √6 = √3(3√3 – √2)
a4 – a3 = √12 – √9 = √3(2 – 3√3)
అన్ని సందర్భాలలోను ak + 1 – ak సమానము కాదు.
కావున ఈ జాబితా ఒక అంకశ్రేఢి (A. P.) కాదు.