SCERT AP 10th Class Maths Textbook Solutions Chapter 10 క్షేత్రమితి InText Questions Textbook Exercise Questions and Answers.
AP State Syllabus 10th Class Maths Solutions 10th Lesson క్షేత్రమితి InText Questions
ప్రయత్నించండి:
ప్రశ్న 1.
ఈ క్రింది వాటిని పరిశీలించి ప్రతి సందర్భములో ఘనాకు ఘనపరిమాణము మరియు వైశాల్యములలో ఏది పట అవసరమవుతుందో ? ఎందుచేతో వివరించండి.
సాధన.
(i) ఒక సీసాలో గల నీటి పరిమాణం
(ii) గుడారము తయారుచేయడానికి కావలసిన గుడ్డ పరిమాణము
(iii) ఒక లారీలో గల సంచుల సంఖ్య
(iv) సిలిండర్ లో నింపబడిన గ్యాస్ పరిమాణం
(v) ఒక అగ్గిపెట్టెలో నింపగల్గిన అగ్గిపుల్లల సంఖ్య (పేజీ నెం. 245)
సాధన.
(i) ఘనపరిమాణం – 3 – D ఆకారం
(ii) వైశాల్యం – ఉపరితల ప్రక్కతల మరియు సంపూర్ణతల వైశాల్యములు
(iii) ఘనపరిమాణం – 3 – D ఆకారం
(iv) ఘనపరిమాణం – 3 – D ఆకారం
(v) ఘనపరిమాణం – 3 – D ఆకారం
ప్రశ్న 2.
పైన ఉదహరించిన విధముగా మరో 5 సందర్భములను నీవు తెలిపి మీ స్నేహితులను – ఘనపరిమాణము, వైశాల్యములలో ఏది అవసరమో ? చెప్పమని అడగండి. (పేజీ నెం. 245)
సాధన.
ప్రాజెక్ట్ వర్క్
ప్రశ్న 3.
ఇయ్యబడిన ఘనాకృతుల పటములను మీకు తెలిసిన ఘనాకృతులుగా విడదీయండి. (పేజీ నెం. 246)
సాధన.
ప్రశ్న 4.
మీ చుట్టూ ఉన్న పరిసరాలలో మీరు గమనించిన 6 వివిధ ఆకృతుల సమ్మేళనముగా ఉన్న వస్తువులు పటములను గూర్చి ఆలోచించండి. (పేజీ నెం. 246)
సాధన.
ప్రాజెక్ట్ వర్క్.
ప్రయతించండి:
ప్రశ్న 1.
మీకు తెలిసిన కొన్ని ఘనాకార వస్తువులను తీసుకొని రెండు లేదా అంతకంటే ఎక్కువ వస్తువులను కలిపి మీ నిత్యజీవితంలో కనిపించే ఆకారాలను – వీలయినన్ని తయారు చేయండి. – – ASL, (సూచన : బంకమట్టి, బంతులు, పైపులు, కాగితపు శంఖాలు, ఘన, దీర్ఘఘనాకార పెట్టెలు మొదలగునవి) (పేజీ నెం. 252)
సాధన.
ప్రాజెక్ట్ వర్క్.
ఆలోచించి, చర్చించి, రాయండి:
ప్రశ్న 1.
స్థూపాకార పాత్రలో ఒక ఈ గోళము. అంతర్లీనపరచబడినది. అయినచో గోళము యొక్క ఉపరితల వైశాల్యము, స్థూపము యొక్క వక్రతల వైశాల్యమునకు సమానమవుతుందా ? మీ సమాధానము ‘అవును’ అయితే అది ఏవిధముగా సాధ్యమో సహేతుకముగా వివరింపుము. (పేజీ నెం. 252)
సాధన.
అవును.
గోళం యొక్క ఉపరితల వైశాల్యం స్థూపం యొక్క వక్రతల వైశాల్యానికి సమానం అగును. స్థూపం యొక్క వ్యాసార్ధం = r
దాని ఎత్తు = h అనుకొనిన
వక్రతల స్థూపం ప్రక్కతల వైశాల్యము = 2πrh
మనం = 2πr (r + r) [∵ ఎత్తు = 2 × వ్యాసార్ధం = 2r]
= 2πr.(2r)
= 4πr2
∴ గోళం ఉపరితల వైశాల్యము = 4πr2.
∴ స్థూపం ప్రక్కతల వైశాల్యం = గోళం ఉపరితల వైశాల్యం .
ప్రయత్నించండి:
ప్రశ్న 1.
ఒక తీగ యొక్క మధ్యచ్ఛేద వ్యాసమును 5 శాతము తగ్గిస్తే’ దాని ఘనపరిమాణములో మార్పు లేకుండా ఉండటానికి దాని పొడవును, ఎంత శాతము పెంచాలో లెక్కింపుము. (పేజీ నెం. 257)
సాధన.
తీగ వ్యాసార్ధం (r) = \(\frac{\mathrm{d}}{2}=\frac{5 \%}{2} \times \mathrm{x}\)
∴ వ్యాసార్ధం = \(\frac{5 x}{2} \%\). [∵ r = x అనుకొనుము]
πr12h1 = πr22h2
⇒ r12h1 = r22h2
⇒ x2h1 = \(\left[x-\frac{5 x}{2 \times 100}\right]^{2}\) × h2
= \(\left[x-\frac{x}{40}\right]^{2}\) × h2
= \(\left(\frac{40 x-x}{40}\right)^{2}\) × h2 = \(\left(\frac{39 x}{40}\right)^{2}\) × h2
x2h1 = \(\frac{1521}{1600}\) x2 × h2
h1 = \(\frac{1521}{16}\)% × h2
∴ h1 = \(\frac{1521}{16}\)% × h2
అనగా దాని ఘనపరిమాణం స్థిరంగా .మారకుండా ఉండవలెనంటే దాని పొడవు (ఎత్తు) \(\frac{1521}{16}\)% పెంచాలి.
ప్రశ్న 2.
గోళము, ఘనము యొక్క ఉపరితల వైశాల్యములు సమానము. అయినచో వాటి ఘనపరిమాణముల నిష్పత్తిని కనుక్కోండి. (పేజీ నెం. 257)
సాధన.
సమఘనం భుజం = ‘a’ యూనిట్లు.
దాని సంపూర్ణతల వైశాల్యము = 6a2
లెక్క ప్రకారము, గోళం యొక్క ఉపరితల వైశాల్యము (4πr2) = ఘనం యొక్క ఉపరితల వైశాల్యము (6a2)
⇒ r2 = \(\frac{6 a^{2}}{4 \pi}\)
r = \(\sqrt{\frac{6 \mathrm{a}^{2}}{4 \pi}}=\sqrt{\frac{3}{2 \pi}} \times \mathrm{a}\)
ఘనం ఘనపరిమాణం (V) = a3
గోళం ఘనపరిమాణం (V) = \(\frac{4}{3}\) πr3
= \(\frac{4}{3} \pi\left(\sqrt{\frac{3}{2 \pi}} \cdot a \times \sqrt{\frac{3}{2 \pi}} \cdot a \times \sqrt{\frac{3}{2 \pi}} \times a\right)\)
= \(\frac{4}{3} \times \pi \times \frac{3 \sqrt{3}}{2 \pi \sqrt{2 \pi}} \times a^{3}\)
= \(\frac{2 \sqrt{3}}{\sqrt{2 \pi}} a^{3}=\frac{\sqrt{6}}{\sqrt{\pi}} a^{3}\)
∴ వాని ఘనపరిమాణాల నిష్పత్తి = a3 : \(\frac{\sqrt{6}}{\sqrt{\pi}}\)a3
= 1 : \(\frac{\sqrt{6}}{\sqrt{\pi}}\)
= √π : √6.
ఇవి చేయండి:
ప్రశ్న 1.
1 సెం.మీ. వ్యాసము, 8 సెం.మీ. పొడవు కల్గిన ఒక రాగి కడ్డీ 18 మీటర్లు పొడవు కల్గిన ఏక మందము గల తీగగా మలచబడినది. అయినచో తీగ యొక్క మందమును కనుగొనుము. (పేజీ నెం. 263)
సాధన.
రాగి కడ్డీ ఘనపరిమాణం = స్థూపం ఘనపరిమాణం = πr2h
= \(\frac{22}{7}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × 8 (∵ r = \(\frac{\mathrm{d}}{2}=\frac{1}{2}\) సెం.మీ.)
ఎత్తు (h) = 8 సెం.మీ.)
= \(\frac{44}{7}\) సెం.మీ2
18 మీ. పొడవు గల సన్నని తీగగా రాగి కడ్డీని మలచగా దాని మందం (వ్యాసం)
⇒ πr2h = \(\frac{44}{7}\)
⇒ \(\frac{22}{7}\) × r2 × 18 = \(\frac{44}{7}\)
⇒ r2 = \(\frac{{ }^{2} 44 \times 7}{7 \times 22 \times 18_{9}}\)
⇒ r2 = \(\frac{1}{9}\)
⇒ r = \(\sqrt{\frac{1}{9}}=\frac{1}{3}\)= 0.3 సెం.మీ.
∴ రాగి కడ్డీ మందం (d) = 2 × r = 2 × 0.3
∴ d = 0.6 సెం.మీ.
ప్రశ్న 2.
ప్రవల్లిక ఇంటి పై కప్పుపై వాటర్ ట్యాంక్ స్థూపాకార.ఆకృతిలో నిర్మించబడింది. భూగర్భములో దీర్ఘ ఘనాకారములో యున్న సంప్ నుండి నీరు మోటారు సహాయముతో వాటర్ టాంకు పంపబడుతుంది. సంప్ యొక్క కొలతలు 1.57 మీటర్లు × 1.44 మీటర్లు × 9.5 సెం.మీ. వాటర్ ట్యాంక్ యొక్క వ్యాసార్ధము 60 సెం.మీ. మరియు ఎత్తు 95 సెం.మీ. నీటితో నిండుగా యున్న సంప్ నుండి నీటిని వాటర్ ట్యాంక్ నిండుగా నింపితే అందులో మిగిలి వున్న నీటి మట్టము యొక్క ఎత్తు ఎంత ? సంప్ మరియు వాటర్ ట్యాంకుల యొక్క నీటి నిల్వ సామర్థ్యములను పోల్చుము. (π = 3.14) (పేజీ నెం. 263) .
సాధన.
సంలోని నీటి ఘనపరిమాణం
V1 = 1.57 × 1.44 × 10.95 [∵ V = lbh]
= 2.14776 మీ3
V1 = 2147760 సెం.మీ.3
స్థూపాకార నీటి ట్యాంక్ ఘనపరిమాణం V2 = πr2h
= 44 × 60 × 60 × 95
V2 = 1073880 సెం.మీ3
ట్యాంకును నీటితో నింపిన తరువాత సం లో గల నీటి పరిమాణం = V1 – V2
= 2147760 – 1073880
= 1073880 సెం.మీ3
ట్యాంక్ లోని నీటి మట్టం ఎత్తు, h అనుకొనుము.
⇒ 157 × 144h = 1073880
h = \(\frac{1073880}{157 \times 144}\)
= 47.5 సెం.మీ.
157 × 144 = 47.5
∴ సంస్లోని నీటి పరిమాణానికి మరియు ట్యాంక్ లోని నీటి పరిమాణానికి గల నిష్పత్తి = 2147760 : 1073880 = 2 : 1.
ఆలోచించి, చర్చించి, రాయండి:
ప్రశ్న 1.
ఏ పాత్ర ఎక్కువ నీటిని తనలో నింపుకొనగలదు ? మీ స్నేహితులతో చర్చించండి. (పేజీ నెం. 262)
సాధన.
(i) వ పటం నుండి వ్యాసార్ధం = r1
= 1 = 0.5 సెం.మీ.
ఎత్తు (h1) = 4 సెం.మీ.
V1 = మొదటి పాత్ర ఘనపరిమాణం = πr2h
= \(\frac{22}{7}\) × 0.5 × 0.5 × 4
= 3.142 సెం.మీ3
(ii) వ పటంనుండి,
r = \(\frac{\mathrm{d}}{2}=\frac{4}{2}\) = 2 సెం.మీ.
ఎత్తు (h) = 1 సెం.మీ.
V2 = రెండవ పాత్ర ఘనపరిమాణం = πr2h
\(\frac{22}{7}\) × 2 × 2 × 1
= 12.57 సెం.మీ3
∴ రెండవ పాత్ర ఘనపరిమాణం మొదటి పాత్ర ఘనపరిమాణం కంటే ఎక్కువ. [∵ V1 > V2]
ఉదాహరణలు:
ప్రశ్న 1.
10 మీ. ఎత్తుగల శంఖాకారములో యున్న గుడారము యొక్క భూవ్యాసార్ధం 7 మీటర్లు. గుడారము నిర్మించ డానికి కావలసిన గుడ్డ పొడవును గుడ్డ యొక్క వెడల్పు 2 మీటర్లగా ఉన్నప్పుడు కనుగొనండి. (π = \(\frac{22}{7}\) గా తీసుకొనుము) (పేజీ నెం. 247)
సాధన.
గుడారము యొక్క భూవ్యాసార్ధం (r) = 7 మీటర్లు.
ఎత్తు (h) = 10 మీటర్లు.
∴ శంఖువు ఏటవాలు ఎత్తు (l) = \(\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}\)
(∵ l2 = r2 + h2)
= √49 + 100 = √149
= 12.2 మీటర్లు.
గుడారము యొక్క ఉపరితలవైశాల్యం = πrl
= \(\frac{22}{7}\) × 7 × 12.2 చ.మీ.
= 268.4 చ.మీ. ఉపయోగించిన గుడ్డ యొక్క వైశాల్యం = 268.4 చ.మీ.
గుడ్డ యొక్క వెడల్పు = 2 మీ.
∴ గుడ్డ యుక్క పొడవు వెడల్పు = వైశాల్యం / వెడల్పు
= \(\frac{268.4}{2}\)
= 134.2 మీ.
ప్రశ్న 2.
స్థూపాకృతిలోనున్న నూనె పీపా 2 మీటర్ల భూవ్యాసం మరియు 7 మీటర్ల ఎత్తును కల్గియున్నది. పీపాకు రంగు వేయడానికి పెయింటర్ 1 చదరపు మీటరునకు ₹ 3 లను తీసుకొంటుంటే, 10 నూనె పీపాలకు రంగు వేయడానికి ఎంత ఖర్చవుతుంది? (పేజీ నెం. 247)
సాధన.
స్థూపాకార నూనె పీపా యొక్క భూవ్యాసము (d) = 2 మీటర్లు
d 2 స్థూపము వ్యాసార్ధము (r) = \(\frac{\mathrm{d}}{2}=\frac{2}{2}\) = 1 మీటరు.
స్థూపాకార ఎత్తు (b) = 7 మీ.
స్థూపాకార నూనె పీపా యొక్క సంపూర్ణతల వైశాల్యము = 2 × πr (r + h)
= 2 × \(\frac{22}{7}\) × 1 (1 + 7)
= 2 × \(\frac{22}{7}\) × 8
= 50.28 (మీటరు)2
అందుచే పీపా యొక్క సంపూర్ణతల వైశాల్యం = 50.28 (మీటరు)2
1చ.మీ.కు రంగు వేయడానికి అయ్యే ఖర్చు = ₹ 3
10 పీపాలకు రంగు వేయడానికయ్యే మొత్తం ఖర్చు = 50.28 × 3 × 10
= ₹ 1508.4.
ప్రశ్న 3.
ఒక గోళం, ఒక స్థూపం, ఒక శంఖువు ఒకే ఎత్తు, ఒకే .వ్యాసార్ధంలను కల్గియున్నాయి. అయినచో వాటి యొక్క వక్రతల వైశాల్యముల నిష్పత్తి ఎంత ? (పేజీ నెం. 248)
సాధన.
గోళం, స్థూపం మరియు శంఖువు యొక్క భూవ్యాసార్ధం ‘r’ అనుకొందాం.
గోళము ఎత్తు = వ్యాసం = 2r
∴ శంఖువు ఎత్తు = స్థూపము ఎత్తు = గోళము ఎత్తు = 2r.
శంఖువు ఏటవాలు ఎత్తు = \(\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}\)
= \(\sqrt{r^{2}+(2 r)^{2}}=\sqrt{5} r\)
S1 = గోళం ఉపరితల వైశాల్యం = 4πr2
S2 = స్థూపము ఉపరితల వైశాల్యం = 2πrh
= 2πr × πr = 4πr2
S3 = శంఖువు ఉపరితల వైశాల్యం = πrl
= πr × √5r
= √5πr2
∴ ఉపరితల వైశాల్యముల నిష్పత్తి = S1 : S2 : S3
S1 : S2 : S3 = 4πr2 : 4πr2 : √5 πr2
= 4 : 4 : √5.
ప్రశ్న 4.
ఒక కంపెనీ దళసరి ఉక్కుషీట్ నుపయోగించి 1000 అర్ధగోళాకారంలో ఉన్న బేసిన్లను తయారు చేయాలని అనుకొంది. అర్ధగోళాకార బేసిన్ వ్యాసార్థం 21 సెం.మీ ఉండే విధముగా 1000 బేసిన్లు తయారు చేయడానికి కావలసిన ఉక్కుషీట్ యొక్క వైశాల్యము ఎంత ? (పేజీ నెం. 248)
సాధన.
అర్ధగోళాకార బేసిన్ వ్యాసార్ధం (r) = 21 సెం.మీ
ఉపరితల వైశాల్యం = 2πr2
= 2 × \(\frac{22}{7}\) × 21 × 21
= 2772 (సెం.మీ)2.
అందుచే అర్ధగోళాకార బేసిన్ యొక్క ఉపరితల వైశాల్యం = 2772 (సెం.మీ)2.
1 బేసిన్ తయారీకి కావలసిన ఉక్కుషీట్ వైశాల్యం = 2772 (సెం.మీ)2
1000 బేసిన్ల తయారీకి కావలసిన మొత్తం ఉక్కుషీట్ వైశాల్యం = 2772 × 1000
= 2772000 సెం.మీ2 = 277.2 మీ2.
ప్రశ్న 5.
ఒక క్రమ వృత్తాకార స్థూపము .యొక్క భూవ్యాసార్ధం 14 సెం.మీ. మరియు ఎత్తు 21 సెం.మీ. అయిన ఈ క్రింది వాటిని కనుగొనుము.
(i) భూతల వైశాల్యం
(ii) వక్రతల వైశాల్యం
(iii) సంపూర్ణతల వైశాల్యం
(iv) క్రమ వృత్తాకార స్థూపము యొక్క ఘనపరిమాణం (పేజీ నెం. 249)
సాధన.
స్థూపపు భూవ్యాసార్ధం (r) = 14 సెం.మీ.
స్థూపపు ఎత్తు (h) = 21 సెం.మీ.
(i) భూ వైశాల్యం = πr2
= \(\frac{22}{7}\) (14)2
= 616 (సెం.మీ.)
(ii) వక్రతల వైశాల్యం = 2πrh
= 2 × \(\frac{22}{7}\) × 14 × 21
= 1848 (సెం.మీ.)2.
(iii) సంపూర్ణతల వైశాల్యం = 2 × భూవైశాల్యం + వక్రతల వైశాల్యం
= 2 × 616 + 1848 = 3080 (సెం.మీ)2
(iv) స్థూపపు ఘనపరిమాణం = πr2h
= భూవైశాల్యం × ఎత్తు
= 616 × 21 = 12936 (సెం.మీ)2.
ప్రశ్న 6.
2.1 సెం.మీ. వ్యాసార్ధము కలిగిన గోళము యొక్క – ఉపరితల వైశాల్యం, ఘనపరిమాణములను కనుగొనుము. (π = \(\frac{22}{7}\)గా తీసుకొనుము) పేజీ నెం. 249)
సాధన.
గోళ వ్యాసార్ధం (r) = 2.1 సెం.మీ.
గోళం ఉపరితల వైశాల్యం = 4πr2
= 4 × \(\frac{22}{7} \times \frac{21}{10} \times \frac{21}{10}\)
= \(\frac{1386}{25}\)
= 55.44 (సెం.మీ)2
∴ గోళము ఘనపరిమాణము = \(\frac{4}{3}\) πr3
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × (2.1)3
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × 2.1 × 2.1 × 2.1
= 38.808 (సెం.మీ)3.
ప్రశ్న 7.
3.5 సెం.మీ. వ్యాసార్ధము కల్గిన అర్ధగోళము యొక్క సంపూర్ణతల వైశాల్యము మరియు ఘనపరిమాణములను కనుగొనుము. (π = \(\frac{22}{7}\)) (పేజీ నెం. 150)
(లేదా) 7 సెం.మీ. వ్యాసముగా కలిగిన అర్ధ గోళం ఘనపరిమాణం మరియు సంపూర్ణతల వైశాల్యంలను కనుగొనండి. (π = \(\frac{22}{7}\) గా తీసుకొనుము)
సాధన.
అర్ధగోళ వ్యాసార్ధము (r) = 3.5 సెం.మీ. = 1 సెం.మీ.
∴ అర్ధగోళ ఘనపరిమాణము = \(\frac{2}{3}\) πr3.
= \(\frac{2}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}\)
= \(\frac{539}{6}\) = 89.88 (సెం.మీ)3.
∴ సంపూర్ణతల వైశాల్యం = 3πr2
ప్రశ్న 8.
ఒక లంబకోణ త్రిభుజము యొక్క భూమి 15 సెం.మీ మరియు ఎత్తు 20 సెం.మీ. దానిని కర్ణము వెంబడి భ్రమణము చేయగా ఏర్పడే ద్విశంఖువు ఆకారము యొక్క ఘనపరిమాణము మరియు ఉపరితల వైశాల్యము కనుక్కోండి. (π = 3.14) AS, (పేజీ నెం. 252)
సాధన.
ABC లంబకోణ త్రిభుజం. AB = 15 సెం.మీ మరియు AC = 20 సెం.మీ.
పైథాగరస్ సిద్ధాంతము ప్రకారము ∆ABC లో
BC2 = AB2 + AC2
BC2 = 152 + 202
BC2 = 225 + 400 = 625
BC = √625 = 25
OA = x మరియు OB = y అనుకొందాం.
∆ABO మరియు ∆ABCలలో ∠BOA = ∠BAC మరియు ∠ABO = ∠ABC
అందుచే, ∆BOA ~ ∆BAC (∵ కోణము – కోణము సరూపకత)
అందుచే \(\frac{\mathrm{BO}}{\mathrm{BA}}=\frac{\mathrm{OA}}{\mathrm{AC}}=\frac{\mathrm{BA}}{\mathrm{BC}}\)
⇒ \(\frac{y}{15}=\frac{x}{20}=\frac{15}{25}\)
⇒ \(\frac{y}{15}=\frac{x}{20}=\frac{3}{5}\)
⇒ \(\frac{y}{15}=\frac{3}{5}\) మరియు \(\frac{x}{20}=\frac{3}{5}\)
⇒ y = \(\frac{3}{5}\) × 15 మరియు x = \(\frac{3}{5}\) × 20
⇒ y = 9 మరియు x = 12
అందుచే, OA = 12 సెం.మీ మరియు OB = 9 సెం.మీ
ద్విశంఖువు ఘనపరిమాణము = శంఖువు CAA’ ఘనపరిమాణము + శంఖువు BAA’ ఘనపరిమాణము
= \(\frac{1}{3}\) π(OA)2 OC + \(\frac{1}{3}\) π (OA)2 OB
= \(\frac{1}{3}\) × π × 122 × 16 + \(\frac{1}{3}\) × π × 122 × 9
= \(\frac{1}{3}\) × π × 144(16 + 9) (సెం.మీ)3
= \(\frac{1}{3}\) × 3.14 × 144 × 25 (సెం.మీ)3
= 3768 (సెం.మీ)3.
సూచన :
= \(\frac{1}{3}\) × π(OA)2 [OC + OB]
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 122 × [16 + 9]
= \(\frac{1}{3}\) × \(\frac{22}{7}\) × 144 × 25
ద్విశంఖువు ఉపరితల వైశాల్యము = 0 శంఖువు CAA’ వక్రతల వైశాల్యము + శంఖువు BAA’ వక్రతల వైశాల్యము.
= (π × OA × AC) + (π × OA × AB)
= (π × 12 × 20) + (π × 12 × 15) (సెం.మీ)2
= 420 π (సెం.మీ)2
= 420 × 3.14 (సెం.మీ)2
= 1318.8 (సెం.మీ)2
ప్రశ్న 9.
ఇచ్చిన పటంలో చూపిన విధముగా కర్రతో చేసిన రాకెట్ బొమ్మ స్థూపముపై నిలిపిన శంఖువు వలే ఉన్నది. రాకెట్ యొక్క ఎత్తు 26 సెం.మీ, శంఖువు ఆకారములో యున్న భాగము ఎత్తు 6 సెం.మీ, శంఖువు, ఆకారము భాగము భూవ్యాసము 5 సెం.మీ మరియు స్థూపాకార భాగము యొక్క భూవ్యాసము 3 సెం.మీ. శంఖాకృతి భాగముకు నారింజరంగు, స్థూపాకార
భాగముకు పసుపు రంగు వేస్తే, ఈ రంగులు వేయడానికి కావలసిన రాకెట్ వైశాల్యమును విడివిడిగా కనుగొనుము. (ప్రశ్న = 3.14) (పేజీ నెం.254)
సాధన.
శంఖువు (ఆకారము యొక్క భూవ్యాసార్ధము (r) మరియు ఏటవాలు ఎత్తు ‘l’ అనుకొందాం. స్థూపాకార భాగము యొక్క భూవ్యసార్ధము r1 మరియు ఎత్తు h1 అనుకొందాం.
r = 2.5 సెం.మీ; h = 6 సెం.మీ r1 = 1.5 సెం.మీ. h1 = 20 సెం.మీ
ఇపుడు, l = \(\sqrt{\mathrm{r}^{2}+\mathrm{h}^{2}}\)
⇒ l = \(\sqrt{(2.5)^{2}+6^{2}}\)
l = \(\sqrt{6.25+36}\)
l = \(\sqrt{42.25}\) = 6.5
నారింజ రంగు వేయబడిన భాగము వైశాల్యము .
∴ శంఖువు యొక్క వక్రతల వైశాల్యము = πrl
= 3.14 {2.5 × 6.5} = 51.025 (సెం.మీ)2
పసుపురంగు వేయబడిన భాగము వైశాల్యం = స్థూపము యొక్క వక్రతల వైశాల్యం + మన స్థూపం యొక్క భూవైశాల్యం
= 2πr1h1 + πr12 = πr1 (2h1 + r1)
= 3.14 × 1.5 (2 × 20 + 1.5) సెం.మీ2
= 3.14 × 11.5 × 41.5 (సెం.మీ)2
= 4.71 × 41.5 (సెం.మీ)2 .
= 195.465 (సెం.మీ).
అందుచే పసుపురంగు వేయబడిన భాగము వైశాల్యము = 195.465 (సెం.మీ) .
ప్రశ్న 10.
‘ఒక చివర ‘ అర్ధగోళాకారంను మరో చివర క్రమ వృత్తాకార శంఖువు ఆకారమును కల్గిన క్రమ వృత్తాకార స్థూపాకార ఘనాకృతి ఆట వస్తువు యొక్క ఉమ్మడి వ్యాసము 4.2 సెం.మీ, స్థూపాకార, శంఖువు ఆకార భాగముల యొక్క ఎత్తులు వరుసగా 12 సెం.మీ మరియు 7 సెం.మీ అయితే ఘనాకార ఆటవస్తువు యొక్క ఘనపరిమాణమును కనుక్కోండి. (π = \(\frac{22}{7}\) గా తీసుకొనుము). (పేజీ నెం. 257)
సాధన.
శంఖువు ఆకార భాగము యొక్క ఎత్తు h1 = 7 సెం.మీ.
స్థూపాకార భాగము యొక్క ఎత్తు h2 = 12 సెం.మీ.
వ్యాసార్ధము (r) = \(\frac{4.2}{2}\) = 2.1 = \(\frac{21}{10}\) సెం.మీ.
ఆటవస్తువు యొక్క ఘనపరిమాణము = శంఖువు ఆకార భాగ ఘనపరిమాణం – + స్థూపాకార ఆకార భాగ ఘనపరిమాణం + అర్ధగోళాకార భాగ ఘనపరిమాణం
= \(\frac{1}{3}\) πr2h1 + πr2h2 + \(\frac{2}{3}\) πr3
= πr2[\(\frac{1}{3}\) h1 + h2 + \(\frac{2}{3}\)r]
= \(\frac{22}{7} \times\left(\frac{21}{10}\right)^{2} \times\) \(\left[\frac{1}{3} \times 7+12+\frac{2}{3} \times \frac{21}{10}\right]\)
= \(\frac{22}{7} \times \frac{441}{100} \times\left[\frac{7}{3}+\frac{12}{1}+\frac{7}{5}\right]\)
= \(\frac{22}{7} \times \frac{441}{100} \times\left[\frac{35+180+21}{15}\right]\)
= \(\frac{22}{7} \times \frac{441}{100} \times \frac{236}{15}\)
= \(\frac{27258}{125}\) = 218.064 (సెం.మీ.)3
ప్రశ్న 11.
12 సెం.మీ వ్యాసము మరియు 15 సెం.మీ. ఎత్తు కలిగిన ఒక స్థూపాకార పాత్ర ఐస్ క్రీంతో నింపబడినది. ఈ ఐస్ క్రీంను పై తలం అర్ధగోళాకారంలో ఉన్న శంఖువులలో సమానముగా నింపి 10 మంది పిల్లలకు పంచబడినది. శంఖువు ఆకారభాగపు ఎత్తు, భువ్యాసమునకు రెట్టింపు ఉన్నచో ఐస్ క్రీంకోన్ యొక్క వ్యాసమును కనుగొనుము. (పేజీ నెం. 258)
సాధన.
శంఖువు ఆకార ఐస్ క్రీం యొక్క భూవ్యాసార్ధము (r) = x సెం.మీ అనుకొందాం.
వ్యాసం = 25 సెం.మీ.;
అప్పుడు దాని ఎత్తు = 2(భూవ్యా సము) = 2(2x) = 4x సెం.మీ.
ఐస్ క్రీం కోన్ యొక్క ఘనపరిమాణం = శంఖువు ఆకార భాగము ఘనపరిమాణం + అర్ధగోళాకృతి భాగం ఘనపరిమాణం
= \(\frac{1}{3}\) πr2h + \(\frac{2}{3}\) πr3
= \(\frac{1}{3}\) πx2(4x) + \(\frac{1}{3}\) πx3 (∵ r = x)
= \(\frac{4 \pi x^{3}+2 \pi x^{3}}{3}=\frac{6 \pi x^{3}}{3}\)
= 2πx3 (సెం.మీ)3
స్థూపాకార పాత్ర యొక్క వ్యాసము = 12 సెం.మీ
దాని ఎత్తు (h) = 15 సెం.మీ .
∴ స్థూపాకార పాత్ర యొక్క ఘనపరిమాణం = πr2 h = π(6)2 15 = 5407 (సెం.మీ)3
ఐస్ క్రీం పంచబడిన విద్యార్థుల సంఖ్య = 10
(స్థూపాకార పాత్ర యొక్క ఘనపరిమాణం) / (ఒక ఐస్ క్రీం కోన్ యొక్క ఘనపరిమాణం) = 10
⇒ \(\frac{540 \pi}{2 \pi \mathrm{x}^{3}}\) = 10
⇒ 2πx3 × 10 = 540π
⇒ x3 = \(\frac{540}{2 \times 10}\) = 27
⇒ x3 = 33
⇒ x = 3
∴ ఐస్ క్రీం కోన్ యొక్క వ్యాసం = 2x = 2(3) = 6 సెం.మీ.
ప్రశ్న 12.
క్రింది పటములో చూపిన విధముగా అర్ధగోళాకృతిపై నిటారుగా క్రమ వృత్తాకార శంఖువును నిలిపినట్లు ఉన్న ఘనాకార వస్తువును నీటితో పూర్తిగా నింపబడి ఉన్న ఒక క్రమ వృత్తాకార స్థూపాకృతి వస్తువులో దాని అడుగుభాగమును తాకేటట్లుగా ముంచబడినది. స్థూపము యొక్క భూవ్యాసార్ధము 3 సెం.మీ మరియు ఎత్తు 6సెం.మీ, అర్ధగోళము యొక్క వ్యాసార్ధము 2 సెం.మీ, శంఖువు ఎత్తు 4 సెం.మీ.గా ఉంటే స్థూపంలో మిగిలియున్న నీటి యొక్క ఘనపరిమాణం ఎంత ? (π = \(\frac{22}{7}\) గా తీసుకొనుము). (పేజీ నెం. 259)
సాధన.
ABCD స్థూపము, LMN అర్ధగోళము, OLM శంఖువు అర్ధగోళముపై నిలుపబడిన క్రమ వృత్తాకార శంఖువు ఆకార వస్తువును స్థూపముతో ముంచబడితే తొలగింపబడిన నీటి ఘనపరిమాణము వస్తువు యొక్క ఘనపరిమాణమునకు సమానము. స్టూపము యొక్క ఘనపరిమాణం = πr2h
π × 32 × 6 = 54π (సెం.మీ)3
అర్ధగోళము యొక్క ఘనపరిమాణం
= \(\frac{2}{3}\) πr3
= \(\frac{2}{3}\) × π × 23
= \(\frac{16}{3}\) π (సెం.మీ)3
శంఖువు యొక్క ఘనపరిమాణం = \(\frac{1}{3}\) πr2h
= \(\frac{1}{3}\) × π × 22 × 4
= \(\frac{16}{3}\) π (సెం.మీ.)3
శంఖువు మరియు అర్ధగోళము యొక్క ఘనపరిమాణం = \(\frac{16}{3}\) π + \(\frac{16}{3}\) π
= \(\frac{32}{3}\) π
స్థూపాకార వస్తువు నుండి తొలగింపబడిన నీటి ఘనపరిమాణం = (స్తూపము ఘనపరిమాణం) – (శంఖువు మరియు అర్ధగోళము యొక్క ఘనపరిమాణం)
= 54 π – \(\frac{32 \pi}{3}\)
= \(\frac{162 \pi-32 \pi}{3}=\frac{130 \pi}{3}\)
= \(\frac{130}{3} \times \frac{22}{7}=\frac{2860}{21}\)
= 136. 19 (సెం.మీ)2
ప్రశ్న 13.
స్థూపాకారముగానున్న పెన్సిల్ ను ఒక చివర చెక్కి ఆ చివరను ఒక శంఖువు ఆకృతిలో మారిస్తే దాని పొడవులో మార్పులేకుండా), పెన్సిల్ యొక్క వ్యాసము 1 సెం.మీ|| మరియు శంఖువు ఆకృతి భాగము యొక్క ఎత్తు 2 సెం.మీ అయినపుడు చెక్కబడిన భాగము యొక్క ఘనపరిమాణము ఎంత ? (π = \(\frac{355}{113}\) గా తీసుకొనుము). (పేజీ నెం. 260)
సాధన.
పెన్సిల్ యొక్క వ్యాసము = 1 సెం.మీ .
పెన్సిల్ యొక్క వ్యాసార్ధము (r) = 0.5 సెం.మీ
శంఖువు ఆకార భాగము యొక్క పొడవు (ఎత్తు) = h
= 2 సెం.మీ
చెక్కబడిన భాగము ఘనపరిమాణం = 2 సెం.మీ
పొడవు, 0.5 సెం.మీ
భూవ్యాసార్ధము గల స్థూపాకృతి ఘనపరిమాణం – ఈ స్థూపముచే ఏర్పడిన శంఖువు ఘనపరిమాణం
= πr2h – \(\frac{1}{3}\) πr2h = \(\frac{2}{3}\) πr2h
= \(\frac{2}{3}\) × \(\frac{355}{113}\) × (0.5)2 × 2 సెం.మీ3
= 1.05 సెం.మీ3.
ప్రశ్న 14.
24 సెం.మీ ఎత్తు, 6 సెం.మీ భూవ్యాసార్ధము కల్గిన శంఖువు ఆకార మట్టి ముద్ద ఉన్నది. ఒక బాలుడు దానిని ఒక గోళముగా మారిస్తే, ఆ గోళము యొక్క వ్యాసార్ధము ఎంత ? (పేజీ నెం. 262)
సాధన.
శంఖువు ఘనపరిమాణం = \(\frac{1}{3}\) × π × 6 × 6 × 24 (సెం.మీ)
గోళము యొక్క వ్యాసార్ధము r అయితే దాని ఘనపరిమాణం, = \(\frac{4}{3}\) πr3
3 . శంఖువు ఆకారములో ఉన్న మట్టి ముద్ద గోళాకృతిలో మార్చబడినది కనుక ఘనపరిమాణములో మార్పు ఉండదు. కనుక ,
\(\frac{4}{3}\) πr3 = \(\frac{1}{3}\) × π × 6 × 6 × 24
r3 = 3 × 3 × 24 = 3 × 3 × 3 × 8
r = 33 × 2
r = 3 × 2 = 6
∴ గోళము వ్యాసార్ధము = 6 సెం.మీ.
ప్రశ్న 15.
ఒక బోలు అర్ధగోళము యొక్క అంతర, బాహ్య వ్యాసములు వరుసగా 6 సెం.మీ. మరియు 10 సెం.మీ. దానిని 14 సెం.మీ. వ్యాసముగా గల ఒక స్థూపాకార ఘనముగా మలిస్తే, దాని యొక్క ఎత్తు ఎంత ? (పేజీ నెం. 263)
సాధన.
బోలు అర్ధగోళం యొక్క వ్యాసార్ధము = \(\frac{10}{2}\) = 5 సెం.మీ. = R
అంతర వ్యాసార్ధము = \(\frac{6}{2}\) = 3 సెం.మీ. = r
బోలు అర్ధగోళ పాత్ర యొక్క ఘనపరిమాణం = బాహ్య ఘనపరిమాణం – అంతర ఘనపరిమాణం
= \(\frac{2}{3}\)πR3 – \(\frac{2}{3}\)πr3
= \(\frac{2}{3}\)π (R3 – r3)
= \(\frac{2}{3}\)π (53 – 33)
= \(\frac{2}{3}\)π (125 – 27)
= \(\frac{2}{3}\)π × 98 (సెం.మీ.)3
= \(\frac{196 \pi}{3}\) (సెం.మీ)3 ……….. (1)
బోలు ఘనపు అర్ధగోళము, స్థూపాకార ఘనముగా మలచబడినది .
కనుక రెండింటి ఘనపరిమాణము సమానం.
స్థూపాకార ఘనము యొక్క వ్యాసం = 14 సెం.మీ. (ఇచ్చినది)
అందుచే స్థూపాకార ఘనము వ్యాసార్ధము = 7 సెం.మీ.
స్థూపము యొక్క ఎత్తు = h అనుకొందాం.
∴ స్థూపము యొక్క ఘనపరిమాణం = πr2h
= π × 7 × 7 × h (సెం.మీ)3
= 49πh (సెం.మీ)3 ………. (2)
సమస్యలో ఇచ్చిన దత్తాంశము ప్రకారం, బోలు అర్ధగోళాకార పాత్ర యొక్క ఘనపరిమాణం = ఘనస్థూపము యొక్క ఘనపరిమాణం
\(\frac{196}{3}\) π = 49 πh
(1), (2) సమీకరణముల నుండి)
⇒ h = \(=\frac{196}{3 \times 49}=\frac{4}{3}\) సెం.మీ.
∴ స్థూపము యొక్క ఎత్తు = 1.33 సెం.మీ.
ప్రశ్న 16.
15 సెం.మీ. అంతర వ్యాసార్ధముగా గల అర్ధగోళాకార పాత్రలో ద్రవము నింపబడినది. ఆ ద్రవమును 5 సెం.మీ. వ్యాసము మరియు 6 సెం.మీ. ఎత్తు కల్గిన స్థూపాకార సీసాలో నింపారు. పాత్రలోని ద్రవమును నింపడానికి ఎన్ని సీసాలు అవసరం ? (పేజీ నెం. 264)
సాధన.
అర్ధగోళము ఘనపరిమాణం = \(\frac{2}{3}\) πr3
అర్ధగోళ అంతర వ్యాసార్ధం (r) = 15 సెం.మీ.
∴ అర్ధగోళాకార పాత్రలో నింపబడిన ద్రవ ఘనపరిమాణం = \(\frac{2}{3}\)π(15)3 (సెం.మీ)3
= 22507 (సెం.మీ) స్థూపాకార సీసా యొక్క ఎత్తు (h) = 6 సెం.మీ.
స్థూపాకార సీసా యొక్క వ్యాసార్ధం (R) = \(\frac{5}{2}\) సెం.మీ3.
∴ స్థూపాకార సీసా ఘనపరిమాణం = πR2h
= π × (\(\frac{5}{2}\))2 × 6 (సెం.మీ)3
= \(\frac{75}{2}\)π (సెం.మీ)3
ద్రవమును నింపడానికి కావలసిన సీసాల సంఖ్య = (అర్ధగోళాకార పాత్ర యొక్క ఘనపరిమాణం) / (స్థూపాకార సీసా యొక్క ఘనపరిమాణం)
= \(\frac{2250 \pi}{\frac{75}{2} \pi}=\frac{2 \times 2250}{75}\)
= 60
ప్రశ్న 17.
6 సెం.మీ. వ్యాసము కలిగిన ఒక ఘనపు గోళమును కరిగించి 0.2 సెం.మీ. మధ్యచ్ఛేద వ్యాసము కల్గిన తీగగా మలిస్తే ఆ తీగ పొడవు ఎంత ? (పేజీ నెం. 265)
సాధన.
ఘనపు గోళము వ్యాసం = 6 సెం.మీ.
స్థూపాకార తీగ యొక్క మధ్యచ్ఛేద వ్యాసం = 0.2 సెం.మీ.
వ్యాసార్ధం = 0.1 సెం.మీ.
తీగ యొక్క పొడవు l సెం.మీ. అనుకొందాం.
ఘనపు గోళము స్థూపకార తీగగా మలచబడినది కనుక తీగ పొడవును స్థూపాకార తీగ ఎత్తుగా పరిగణించవచ్చు.
తీగలో ఉపయోగించబడిన లోహ ఘనపరిమాణం = గోళ ఘనపరిమాణం
π × (0.1)2 × l = \(\frac{4}{3}\) × π × 33
π × (\(\frac{1}{10}\))2 × 1= \(\frac{4}{3}\) × π × 27
l = \(\frac{36 \pi \times 100}{\pi}\) సెం.మీ.
= 3600 సెం.మీ. = 36 మీటర్లు
∴ తీగ యొక్క పొడవు (l)= 36 మీటర్లు.
ప్రశ్న 18.
44 సెం.మీ. భుజము కొలతగా గల ఒక సీసపు ఘనమును 4 సెం.మీ. వ్యాసము కల్గిన ఎన్ని గోళాకార బంతులుగా మార్చవచ్చు? (పేజీ నెం. 266)
సాధన.
సీసపు ఘనభుజము = 44 సెం.మీ.
గోళము వ్యాసార్ధము = \(\frac{4}{2}\) మీ. = 2 సెం.మీ.
గోళము ఘనపరిమాణం = \(\frac{4}{3}\) πr3
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × 23 (సెం.మీ.)
= \(\frac{4}{3}\) × \(\frac{22}{7}\) × 8 (సెం.మీ.)3
∴ సీసపు ఘనమును × గోళములుగా తయారుచేస్తే, × గోళముల మొత్తము ఘనపరిమాణం = \(\frac{4}{3}\) × \(\frac{22}{7}\) × 8 × x (సెం.మీ.)3
∴ x గోళముల మొత్తము ఘనపరిమాణం = సీసపు ఘనము యొక్క ఘనపరిమాణం
⇒ \(\frac{4}{3}\) × \(\frac{22}{7}\) × 8 × x = (44)3
⇒ \(\frac{4}{3}\) × \(\frac{22}{7}\) × 8 × x = 44 × 44 × 44
⇒ x = \(\frac{44 \times 44 \times 44 \times 3 \times 7}{4 \times 22 \times 8}\)
x= 2541
అందుచే తయారుచేయబడిన గోళముల సంఖ్య = 2541.
ప్రశ్న 19.
ఒక స్వయం సహాయక బృందం (డ్వాక్రా) దీర్ఘఘనాకృతిలో ఉన్న 66 సెం.మీ., 42 సెం.మీ., 21 సెం.మీ. కొలతలు కలిగిన మైనపు దిమ్మను ఉపయోగించి 4.2 సెం.మీ. వ్యాసం, 2.8 సెం.మీ. ఎత్తు కలిగిన స్థూపాకార కొవ్వొత్తులను తయారు చేయాలనుకొన్నారు. వారు తయారు చేయగల్గే కొవ్వొత్తుల సంఖ్యను కనుగొనండి. (పేజీ నెం. 266)
సాధన.
దీర్ఘఘనాకార మైనపు దిమ్మ యొక్క ఘనపరిమాణం = lbh = (66 × 42 × 21) సెం.మీ3.
స్థూపాకార కొవ్వొత్తి యొక్క వ్యాసార్థం = \(\frac{4.2}{2}\) సెం.మీ. = 2.1 సెం.మీ.
స్థూపాకార కొవ్వొత్తి యొక్క ఎత్తు = 2.8 సెం.మీ.
కొవ్వొత్తి ఘనపరిమాణం = πr2h
= \(\frac{22}{7}\) × (2.1)2 × 2.8
స్థూపాకార కొవ్వొత్తుల యొక్క మొత్తము ఘనపరిమాణం = \(\frac{22}{7}\) × 2.1 × 2.1 × 2.8
∵ స్థూపాకార కొవ్వొత్తుల యొక్క ఘనపరిమాణం = దీర్ఘఘనాకృతిలో యున్న మైనపు దిమ్మ ఘనపరిమాణం
∴ \(\frac{22}{7}\) × 2.1 × 2.1 × 2.8 × x = 66 × 42 × 21
x = \(\frac{66 \times 42 \times 21 \times 7}{22 \times 2.1 \times 2.1 \times 2.8}\) = 1500
∴ తయారుచేయబడిన స్థూపాకార కొవ్వొత్తుల సంఖ్య = 1500.