Practicing the Intermediate 2nd Year Maths 2B Textbook Solutions Inter 2nd Year Maths 2B Integration Solutions Exercise 6(c) will help students to clear their doubts quickly.
Intermediate 2nd Year Maths 2B Integration Solutions Exercise 6(c)
I. Evaluate the following integrals.
Question 1.
∫x sec² x dx on I ⊂ R\{[latex]\frac{(2n+1)\pi}{2}[/latex] : n is integer}.
Solution:
∫uvdx = u∫vdx – ∫[[latex]\frac{d}{du}[/latex](U).∫vdx]dx
Let v = sec² x and u = x then
∫x sec² x dx = x(tan x) – ∫tan x dx
= x tan x – log|sec x| + C
Question 2.
∫ex(tan-1 x + [latex]\frac{1}{1+x^2}[/latex])dx, x ∈ R.
Solution:
∫ex[f(x) + f'(x)] dx = ex. f(x) + C
Let f(x) = tan-1 x so that f'(x) = [latex]\frac{1}{1+x^2}[/latex]
∴ ∫ex(tan-1 x + [latex]\frac{1}{1+x^2}[/latex])dx = extan-1 x + C
Question 3.
∫[latex]\frac{log x}{x^2}[/latex] dx on (0, ∞).
Solution:
∫[latex]\frac{log x}{x^2}[/latex] dx = (log x)(-[latex]\frac{1}{x}[/latex]) + ∫[latex]\frac{1}{x}[/latex] . [latex]\frac{1}{x}[/latex]dx
= – [latex]\frac{1}{x}[/latex]log x – [latex]\frac{1}{x}[/latex] + C
Question 4.
∫(log x)² dx (0, ∞).
Solution:
∫(log x)² dx = (log x)² x – ∫x . 2log x.[latex]\frac{1}{x}[/latex] dx
= x (log x)² – 2 ∫log x dx
= x (log x)² – 2(x . log x – ∫x[latex]\frac{1}{x}[/latex]dx)
= x(log x)² – 2x. log x + 2x + c
Question 5.
∫ex(sec x + sec x . tan x)dx on I ⊂ R\{(2n + 1)[latex]\frac{\pi}{2}[/latex] : n ∈ Z}.
Solution:
∫ex(sec x + sec x . tan x)dx = ex.sec x + C
[∫ex[f(x) + f'(x)]dx = ex f(x) + C]
![]()
Question 6.
∫ex cos x dx on R.
Solution:
I = ∫ex cos x dx = ex sin x – ∫sin x . ex dx
= ex. sin x + ex. cos x – ∫ex . cos x dx
= ex(sin x + cos x) – I
2I = ex(sin x + cos x)
I = [latex]\frac{e^x}{2}[/latex](sin x + cos x) + C
Question 7.
∫ex(sin x + cos x) dx on R.
Solution:
∫ex(sin x + cos x) dx
f(x) = sin x ⇒ f'(x) = cos x
∴ ∫ex(sin x + cos x) dx = ex. sin x + C
Question 8.
∫(tan x + log sec x)ex dx on ((2n – [latex]\frac{1}{2}[/latex])π, (2n + [latex]\frac{1}{2}[/latex])π) n ∈ Z.
Solution:
t = log|sec| ⇒ dt = [latex]\frac{1}{\sec x}[/latex]. sec x .tan x dx
= tan x dx
∫(tan x + log sec x)ex dx = ex.log|sec x| + C
II. Evaluate the following integrals.
Question 1.
∫xnlog x dx on (0, ∞), n is a real nember and n ≠ -1.
Solution:
∫xnlog x dx

Question 2.
∫log (1 + x²) dx on R.
Solution:
∫log (1 + x²) dx on
= [log (1 + x²). x – ∫x[latex]\frac{1}{1+x^2}[/latex]2x dx
= x log (1 + x²) – 2∫[latex]\frac{1+x^2-1}{1+x^2}[/latex]dx
= x log (1 + x²) – 2∫dx + 2∫[latex]\frac{dx}{1+x^2}[/latex]
= x log (1 + x²) – 2x + 2 tan-1 x + C
Question 3.
∫[latex]\sqrt{x}[/latex] log x dx on (0, ∞).
Solution:
∫[latex]\sqrt{x}[/latex] log x dx

Question 4.
∫e√x dx on (0, ∞).
Solution:
t = √x ⇒ x = t²
dx = 2t dt
∫e√x dx = 2∫t et dt
= 2 [t et – ∫et dt
= 2 (t et – et) + C
= 2√x e√x – 2e√x + C
Question 5.
∫x² cos x dx on R.
Solution:
∫x² cosx dx = x²(sin x) – ∫sin x(2x dx)
= x² sin x + 2∫x(-sin x)dx
= x². sin x + 2[x cos x – ∫cos x dx]
= x² sin x + 2x cos x – 2 sin + C
![]()
Question 6.
∫x sin² x dx on R.
Solution:
∫x sin² x dx = [latex]\frac{1}{2}[/latex]∫x(1 – cos 2x) dx
= [latex]\frac{1}{2}[/latex][∫x dx – ∫x cos 2x dx]
= [latex]\frac{1}{2}[/latex][[latex]\frac{x^2}{2}[/latex] – {x . [latex]\frac{\sin 2x}{2}[/latex] – [latex]\frac{1}{2}[/latex]∫sin 2x dx}]
= [latex]\frac{x^2}{4}[/latex] – [latex]\frac{x}{4}[/latex]sin 2x + [latex]\frac{1}{4}[/latex]∫sin 2x dx
= [latex]\frac{x^2}{4}[/latex] – [latex]\frac{x}{4}[/latex]sin 2x – [latex]\frac{1}{8}[/latex]cos 2x + C
Question 7.
∫x cos² x dx on R.
Solution:
∫x cos² x dx = [latex]\frac{1}{2}[/latex]∫x(1+ cos 2x)dx
= [latex]\frac{1}{2}[/latex][∫x dx + ∫x cos 2x dx]
= [latex]\frac{1}{2}[/latex][[latex]\frac{x^2}{2}[/latex] + {x.[latex]\frac{\sin 2x}{2}[/latex] – [latex]\frac{1}{2}[/latex]∫sin 2x dx}]
= [latex]\frac{x^2}{4}[/latex] + [latex]\frac{x}{4}[/latex] sin 2x – [latex]\frac{1}{4}[/latex] ∫sin 2x dx
= [latex]\frac{x^2}{4}[/latex] + [latex]\frac{x}{4}[/latex] sin 2x + [latex]\frac{1}{8}[/latex]cos 2x + C
Question 8.
∫cos √x dx on R.
Solution:
t = x = t² ⇒ dx = 2t dt
I = 2∫t. cos t dt = 2 (t sin t – ∫sin t dt)
= 2(t sin t + cos t) + C
= 2√x sin √x + 2 cos√x + C
Question 9.
∫x sec² 2x dx on I ⊂ R\ {(2nπ + 1)[latex]\frac{\pi}{4}[/latex] : n ∈ Z}.
Solution:
∫x sec² 2x dx = x[latex]\frac{\tan 2x}{2}[/latex] – [latex]\frac{1}{2}[/latex]∫tan 2x dx
= x[latex]\frac{\tan 2x}{2}[/latex] – [latex]\frac{1}{2}[/latex] . [latex]\frac{1}{2}[/latex] log|sec 2x| + C
= x[latex]\frac{\tan 2x}{2}[/latex] – [latex]\frac{1}{4}[/latex] log|sec 2x| + C
Question 10.
∫x cot² x dx on I ⊂ R\{nπ : n ∈ Z}.
Solution:
∫x cot² x dx
= ∫x (cosec² x – 1)dx
= ∫x cosec²x dx – ∫x dx
= x (- cot x) + ∫cot x dx – [latex]\frac{x^2}{2}[/latex]
= – x cot x + log|sin x| – [latex]\frac{x^2}{2}[/latex] + C
Question 11.
∫ex(tan x + sec² x)dx on I ⊂ R\{(2n + 1)[latex]\frac{\pi}{2}[/latex] : n ∈ Z}.
Solution:
f(x) = tan x ⇒ f'(x) = sec² x dx
I = ∫ex[f(x) + f'(x)] dx = ex. f(x) + C
= ex. tan x + C
Question 12.
∫ex([latex]\frac{1+log x}{x}[/latex])dx on (0, ∞).
Solution:
∫ex([latex]\frac{1+log x}{x}[/latex])dx = ∫ex(log x + [latex]\frac{1}{x}[/latex])dx
= ex.log x + C
Question 13.
∫eaxsin bx dx on R, a, b ∈ R.
Solution:
Let I = ∫eaxsin bx dx …………. (1)

Question 14.
∫[latex]\frac{x.e^2}{(x+1)^2}[/latex] dx on I ⊂ R\{-1}
Solution:

Question 15.
∫[latex]\frac{dx}{(x^2+a^2)^2}[/latex], (a > 0) on R.
Solution:
Put x = tan t
Then dx = a sec² t dt

Question 16.
∫ex log (e2x + 5ex + 6) dx on R.
Solution:
∫ex log (e2x + 5ex + 6) dx
∵ e2x + 5ex + 6 = (ex + 2)(ex + 3)
= ∫ex. log((ex + 2)(ex + 3))dx
= ∫ex.{log(ex + 2) + log(ex + 3)}dx
= ∫exlog (ex + 2)dx + ∫exlog (ex + 3)dx
Put ex = t ⇒ exdx = dt
= ∫log(t + 2)dt + ∫log(t + 3) dt
= log(t + 2)∫1dt – ∫{[latex]\frac{d}{dt}[/latex]log(t + 2). ∫1dt}dt + log(t + 3)∫1dt – ∫{[latex]\frac{d}{dt}[/latex]log(t + 3). ∫1dt}dt
= t log(t + 2) – ∫[latex]\frac{1}{t + 2}[/latex])t dt + t log(t+ 3) – ∫[latex]\frac{1}{t + 3}[/latex]). t dt
= t {log(t + 2) + log (t + 3)} – ∫[latex]\frac{t}{t + 2}[/latex]dt – ∫[latex]\frac{t}{t + 3}[/latex]dt
= t log (t² + 5t + 6) – ∫([latex]\frac{t+2-2}{t + 2}[/latex])dt – ∫([latex]\frac{t+3-3}{t + 3}[/latex])dt
= t. log (t² + 5t + 6) – ∫{1 – [latex]\frac{2}{t + 2}[/latex]}dt – ∫{1 – [latex]\frac{3}{t + 3}[/latex]}dt
= t log (t² + 5t + 6) – t + 2 log|t + 2| – t + 3 log|t + 3| + C
= t log (t² + 5t + 6) – 2t + 2 log|t + 2| + 3log|t + 3| + C
= ex log(e2x + 5ex + 6) – 2ex + 2log ex + 2 + 3 log ex + 3 + C
![]()
Question 17.
∫ex.[latex]\frac{x+2}{(x+3)^2}[/latex] dx on I ⊂ R\ {-3}
Solution:

Question 18.
∫cos (log x) dx on (0, ∞).
Solution:
Put log x = t
x = et
dx = et . dt
I = ∫et . cos t . dt
= et sin t – ∫sin.et dt
= et . sin t + cos t . et – ∫et . cos t dt
2I = et . (sin t + cos t)
I = [latex]\frac{e^t}{2}[/latex](sin t + cos t)
= [latex]\frac{x}{2}[/latex][sin(log x) + cos(log x)] + C
III. Evaluate the following integrals.
Question 1.
∫x tan-1 x dx, x ∈ R
Solution:
∫x tan-1 x dx = (tan-1 x)[latex]\frac{x^2}{2}[/latex] – [latex]\frac{1}{2}[/latex]∫x².[latex]\frac{1}{1+x^2}[/latex]dx

Question 2.
∫x² tan-1 x dx, x ∈ R.
Solution:

Question 3.
∫[latex]\frac{tan^{-1}x}{x^2}[/latex] dx, x ∈ I ⊂ R\{0}
Solution:

Question 4.
∫x cos-1x dx, x ∈ (-1, 1).
Solution:
∫x cos-1x dx


Question 5.
∫x² sin-1x dx, x ∈ (-1, 1).
Solution:
∫x² sin-1x dx

![]()
Question 6.
∫x log(1 + x) dx, x ∈ (-1, ∞).
Solution:
∫x log(1 + x) dx


Question 7.
∫sin √x dx, on (0, ∞).
Solution:
x = t² ⇒ dx = 2t dt
∫sin √x dx = 2∫t. sin t dt
= 2(t(-cos t) + ∫cos t dt)
= -2t cos t + 2 sin t
= -2√x cos √x + 2 sin √x + C
Question 8.
∫eax sin (bx + c)dx, (a, b, c ∈ R, b ≠ 0) on R.
Solution:
Let I = ∫eax sin (bx + c)dx


Question 9.
∫ax cos 2x dx on R (a > 0 and a ≠ 0).
Solution:

Question 10.
∫tan-1([latex]\frac{3x-x^3}{1-3x^2}[/latex]) dx on I ⊂ R\{-[latex]\frac{1}{\sqrt{3}}[/latex], [latex]\frac{1}{\sqrt{3}}[/latex]}.
Solution:
Put x = tan t ⇒ dx = sec² t dt
Then
∫tan-1([latex]\frac{3x-x^3}{1-3x^2}[/latex]) dx
= ∫tan-1([latex]\frac{3 \tan t -\tan^3 t}{1-3\tan^2 t}[/latex]) dx
= ∫tan-1(tan 3t).sec² t dt
= 3∫t sec² t dt
= 3[t∫sec² t dt – ∫{[latex]\frac{d}{dt}[/latex](t) ∫sec² t dt}dt]
= 3[t(tan t) – ∫(1) tan t dt]
= 3(x tan-1 x – log[latex]\sqrt{1+x^2}[/latex]) + C
= 3x[tan-1 x – [latex]\frac{3}{2}[/latex]log (1 + x²) + C
= 3x tan-1(x) – [latex]\frac{3}{2}[/latex]log (1 + x²) + C
Question 11.
∫sinh-1 x dx on R.
Solution:

Question 12.
∫cosh-1 x dx on (1, ∞).
Solution:


![]()
Question 13.
∫tanh-1x dx on (-1, 1).
Solution:
