AP State Syllabus AP Board 8th Class Maths Solutions Chapter 2 Linear Equations in One Variable Ex 2.3 Textbook Questions and Answers.
AP State Syllabus 8th Class Maths Solutions 2nd Lesson Linear Equations in One Variable Exercise 2.3
![]()
Question
Solve the following equations:
1. 7x – 5 = 2x
2. 5x – 12 = 2x – 6
3. 7p- 3 = 3p + 8
4. 8m + 9 = 7m + 8
5. 7z + 13 = 2z + 4
6. 9y + 5 = 15y – 1
7. 3x + 4 = 5(x – 2)
8. 3(t – 3) = 5(2t – 1)
9. 5(p – 3) = 3(p – 2)
10. 5(z + 3) = 4(2z + 1)
11. 15(x – 1) + 4(x + 3) = 2 (7 + x)
12. 3 (5z – 7) +2 (9z – 11) = 4 (8z – 7) – 111
13. 8(x – 3) – (6 – 2x) = 2(x + 2) – 5 (5 – x)
14. 3(n – 4)+2(4n – 5) = 5(n + 2) + 16
Solution:
1. 7x – 5 = 2x
⇒ 7x – 2x = 5
⇒ 5x = 5
⇒ x = \(\frac { 5 }{ 5 }\) = 1
∴ x = 1
![]()
2. 5x – 12 = 2x – 6
⇒ 5x – 2x = – 6 + 12
⇒ 3x = 6
⇒ x = \(\frac { 6 }{ 3 }\) = 2
∴ x = 2
3. 7p – 3 = 3p + 8
⇒ 7p – 3p = 8 + 3
⇒ 4p = 11
⇒ p = \(\frac { 11 }{ 4 }\)
4. 8m + 9 = 7m + 8
⇒ 8m – 7m = 8 – 9
∴ m = – 1
5. 7z + 13 = 2z + 4
⇒ 7z – 2z = 4 – 13
⇒ 5z = – 9
∴ z = \(\frac { -9 }{ 5 }\)
![]()
6. 9y + 5 = 15y – 1
⇒ 9y – 15y = – 1 – 5
⇒ -6y = -6
⇒ y = \(\frac { -6 }{ -6 }\)
∴ y = 1
7. 3x + 4 = 5(x – 2)
⇒ 3x + 4 =5x – 10
⇒ 3x – 5x= – 10 – 4
⇒ – 2x = – 14
:. x = 71
8. 3(t – 3) = 5(2t – 1)
⇒ 3t – 9 = 10t – 5
⇒ 3t – 10t = – 5+ 9
⇒ – 7t = 4
∴ t = \(\frac { -4 }{ 7 }\)
9. 5 (p – 3) = 3 (p – 2)
⇒ 5p – 15 = 3p – 6
⇒ 5p – 3p = -6 + 15
⇒ 2p = 9
∴ p = \(\frac { 9 }{ 2 }\)
![]()
10. 5(z + 3) = 4(2z + 1)
⇒ 5z + 15 = 8z + 4
⇒ 5z – 8z = 4 – 15
⇒ – 3z = – 11
⇒ z = \(\frac { -11 }{ 3 }\)
∴ z = \(\frac { -11 }{ 3 }\)
11. 15(x – 1) + 4(x + 3) = 2(7 + x)
⇒ 15x – 15 + 4x + 12= 14 + 2x
⇒ 19x – 3 = 14 + 2x
⇒ 19x – 2x = 14 + 3
⇒ 17x = 17 ,
x = \(\frac { 17 }{ 17 }\) = 1
∴ x = 1
12. 3(5z – 7)+2(9z – 11) = 4(8z – 7) – 111
⇒ 15z – 21 + 18z – 22 = 32z – 28 – 111
⇒ 33z – 43 = 32z – 139
⇒ 33z – 32z = – 139 + 43
∴ z = – 96
![]()
13. 8(x – 3) – (6 – 2x)=2(x+2)-.5(5 – x)
⇒ 8x – 24 – 6 + 2x = 2x + 4 – 25 +5x
⇒ 8x – 30 = 5x – 21
⇒ 8x – 5x= – 21 +30
⇒ 3x = 9
∴ x = 3
14. 3(n – 4) + 2(4n – 5) = 5(n + 2) + 16
⇒ 3n – 12 + 8n – 10 = 5n + 10 + 16
⇒ 11n – 22 = 5n + 26
⇒ 11n – 5n = 26 + 22
⇒ 6n =48
⇒ n = \(\frac { 48 }{ 6 }\) = 8
∴ n = 8