Practicing the Intermediate 1st Year Maths 1A Textbook Solutions Inter 1st Year Maths 1A Matrices Solutions Exercise 3(d) will help students to clear their doubts quickly.
Intermediate 1st Year Maths 1A Matrices Solutions Exercise 3(d)
I.
Question 1.
 Find the determinants of the following matrices.
 (i) \(\left[\begin{array}{cc}
 2 & 1 \\
 1 & -5
 \end{array}\right]\)
 Solution:
 det A = ad – bc
 = 2(-5) – 1(1)
 = -10 – 1
 = -11
(ii) \(\left[\begin{array}{cc}
 4 & 5 \\
 -6 & 2
 \end{array}\right]\)
 Solution:
 det A = 4(2) – (-6)(5)
 = 8 + 30
 = 38
(iii) \(\left[\begin{array}{cc}
 \mathbf{i} & 0 \\
 0 & -\mathbf{i}
 \end{array}\right]\)
 Solution:
 det A = -i2 – 0
 = 1 – 0
 = 1
![]()
(iv) \(\left[\begin{array}{lll}
 0 & 1 & 1 \\
 1 & 0 & 1 \\
 1 & 1 & 0
 \end{array}\right]\)
 Solution:
 det A = 0(0 – 1) – 1(0 – 1) + 1(1 – 0)
 = 1 + 1
 = 2
(v) \(\left[\begin{array}{ccc}
 1 & 4 & 2 \\
 2 & -1 & 4 \\
 -3 & 7 & 6
 \end{array}\right]\)
 Solution:
 det A = 1(-6 – 28) – 4(12 + 12) + 2(14 – 3)
 = -34 – 96 + 22
 = -108
(vi) \(\left[\begin{array}{ccc}
 2 & -1 & 4 \\
 4 & -3 & 1 \\
 1 & 2 & 1
 \end{array}\right]\)
 Solution:
 det A = 2(-3 – 2) + 1(4 – 1) + 4(8 + 3)
 = -10 + 3 + 44
 = 37
(vii) \(\left[\begin{array}{ccc}
 1 & 2 & -3 \\
 4 & -1 & 7 \\
 2 & 4 & -6
 \end{array}\right]\)
 Solution:
 det A = 0 since R1 and R3 are proportional.
![]()
(viii) \(\left[\begin{array}{lll}
 a & h & g \\
 \text { h } & b & f \\
 g & f & c
 \end{array}\right]\)
 Solution:
 det A = a(bc – f2) – h(ch – fg) + g(hf – bg)
 = abc – af2 – ch2 + fgh + fgh – bg2
 = abc + 2fgh – af2 – bg2 – ch2
(ix) \(\left[\begin{array}{lll}
 \mathbf{a} & \mathbf{b} & \mathbf{c} \\
 \mathbf{b} & \mathbf{c} & \mathbf{a} \\
 \mathbf{c} & \mathbf{a} & \mathbf{b}
 \end{array}\right]\)
 Solution:
 det A = a(bc – a2) – b(b2 – ac) + c(ab – c2)
 = abc – a3 – b3 + abc + abc – c3
 = 3abc – a3 – b3 – c3
(x) \(\left[\begin{array}{ccc}
 1^{2} & 2^{2} & 3^{2} \\
 2^{2} & 3^{2} & 4^{2} \\
 3^{2} & 4^{2} & 5^{2}
 \end{array}\right]\)
 Solution:
 det A = \(\left|\begin{array}{ccc}
 1 & 4 & 9 \\
 4 & 9 & 16 \\
 9 & 16 & 25
 \end{array}\right|\)
 = 1(225 – 256) – 4(100 – 144) – 9(64 – 81)
 = -31 + 176 – 153
 = -184 + 176
 = -8
Question 2.
 If A = \(\left[\begin{array}{ccc}
 1 & 0 & 0 \\
 2 & 3 & 4 \\
 5 & -6 & x
 \end{array}\right]\) and det A = 45 then find x.
 Solution:
 det A = 45
 \(\left|\begin{array}{ccc}
 1 & 0 & 0 \\
 2 & 3 & 4 \\
 5 & -6 & x
 \end{array}\right|\) = 45
 ⇒ 3x + 24 = 45
 ⇒ 3x – 45 + 24 = 0
 ⇒ 3x – 21 = 0
 ⇒ x = 7
![]()
II.
Question 1.
 Show that \(\left|\begin{array}{lll}
 b c & b+c & 1 \\
 c a & c+a & 1 \\
 a b & a+b & 1
 \end{array}\right|\) = (a – b)(b – c)(c – a)
 Solution:
 
Question 2.
 Show that \(\left|\begin{array}{ccc}
 \mathbf{b}+\mathbf{c} & \mathbf{c}+\mathbf{a} & \mathbf{a}+\mathbf{b} \\
 \mathbf{a}+\mathbf{b} & \mathbf{b}+\mathbf{c} & \mathbf{c}+\mathbf{a} \\
 \mathbf{a} & \mathbf{b} & \mathbf{c}
 \end{array}\right|\) = a3 + b3 + c3 – 3abc
 Solution:
 
 = (a + b + c) [(-ac + b2) – (-c2 + ab) + (-bc + a2)]
 = (a + b + c) (-ac + b2 + c2 – ab – bc + a2)
 = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
 = a3 + b3 + c3 – 3abc
Question 3.
 Show that \(\left|\begin{array}{ccc}
 \mathbf{y}+\mathbf{z} & \mathbf{x} & \mathbf{x} \\
 \mathbf{y} & \mathbf{z}+\mathbf{x} & \mathbf{y} \\
 \mathbf{z} & \mathbf{z} & \mathbf{x}+\mathbf{y}
 \end{array}\right|\) = 4xyz
 Solution:
 L.H.S = \(\left|\begin{array}{ccc}
 \mathbf{y}+\mathbf{z} & \mathbf{x} & \mathbf{x} \\
 \mathbf{y} & \mathbf{z}+\mathbf{x} & \mathbf{y} \\
 \mathbf{z} & \mathbf{z} & \mathbf{x}+\mathbf{y}
 \end{array}\right|\)
 = (y + z) [(z + x) (x + y) – yz] – x[y(x + y) – yz] + x[yz – z(z + x)]
 = (y + z) (zx + yz + x2 + xy – yz) – x(xy + y2 – yz) + x(yz – z2 – zx)
 = (y + z) (zx + x2 + xy) – x(xy + y2 – yz) + x(yz – z2 – zx)
 = xyz + x2y + xy2 + xz2 + x2z + xyz – x2y – xy2 + xyz + xyz – xz2 – x2z
 = 4xyz
 = R.H.S
Question 4.
 If \(\left|\begin{array}{ccc}
 a & a^{2} & 1+a^{3} \\
 b & b^{2} & 1+b^{3} \\
 c & c^{2} & 1+c^{3}
 \end{array}\right|\) = 0 and \(\left|\begin{array}{ccc}
 a & a^{2} & 1 \\
 b & b^{2} & 1 \\
 c & c^{2} & 1
 \end{array}\right|\) ≠ 0 then show that abc = -1
 Hint: If each element in a row (column) of a square matrix is the sum of two numbers, then its discriminant can be expressed as the sum of discriminants of two square matrices.
 Solution:
 
 
Question 5.
 Without expanding the determinant, prove that
 (i) \(\left|\begin{array}{ccc}
 a & a^{2} & b c \\
 b & b^{2} & c a \\
 c & c^{2} & a b
 \end{array}\right|=\left|\begin{array}{ccc}
 1 & a^{2} & a^{3} \\
 1 & b^{2} & b^{3} \\
 1 & c^{2} & c^{3}
 \end{array}\right|\)
 Solution:
 
(ii) \(\left|\begin{array}{ccc}
 a x & b y & c z \\
 x^{2} & y^{2} & z^{2} \\
 1 & 1 & 1
 \end{array}\right|=\left|\begin{array}{ccc}
 a & b & c \\
 x & y & z \\
 y z & z x & x y
 \end{array}\right|\)
 Solution:
 
(iii) \(\left|\begin{array}{lll}
 1 & b c & b+c \\
 1 & c a & c+a \\
 1 & a b & a+b
 \end{array}\right|=\left|\begin{array}{ccc}
 1 & a & a^{2} \\
 1 & b & b^{2} \\
 1 & c & c^{2}
 \end{array}\right|\)
 Solution:
 L.H.S = \(\left|\begin{array}{ccc}
 1 & b c & b+c \\
 1 & c a & c+a \\
 1 & a b & a+b
 \end{array}\right|\)
 
 = (b – a) (c – a) (c + a – b – a)
 = (a – b) (b – c) (c – a)
 ∴ LHS = RHS
![]()
Question 6.
 If ∆1 = \(\left|\begin{array}{ccc}
 a_{1}^{2}+b_{1}+c_{1} & a_{1} a_{2}+b_{2}+c_{2} & a_{1} a_{3}+b_{3}+c_{3} \\
 b_{1} b_{2}+c_{1} & b_{2}^{2}+c_{2} & b_{2} b_{3}+c_{3} \\
 c_{3} c_{1} & c_{3} c_{2} & c_{3}^{2}
 \end{array}\right|\) and ∆2 = \(\left|\begin{array}{lll}
 a_{1} & b_{2} & c_{2} \\
 a_{2} & b_{2} & c_{2} \\
 a_{3} & b_{3} & c_{3}
 \end{array}\right|\), then find the value of \(\frac{\Delta_{1}}{\Delta_{2}}\)
 Solution:
 
 
Question 7.
 If ∆1 = \(\left|\begin{array}{ccc}
 1 & \cos \alpha & \cos \beta \\
 \cos \alpha & 1 & \cos \gamma \\
 \cos \beta & \cos \alpha & 1
 \end{array}\right|\), ∆2 = \(\left|\begin{array}{ccc}
 0 & \cos \alpha & \cos \beta \\
 \cos \alpha & 0 & \cos \gamma \\
 \cos \beta & \cos \gamma & 0
 \end{array}\right|\) and ∆1 = ∆2, then show that cos2α + cos2β + cos2γ = 1
 Solution:
 ∆1 = \(\left|\begin{array}{ccc}
 1 & \cos \alpha & \cos \beta \\
 \cos \alpha & 1 & \cos \gamma \\
 \cos \beta & \cos \alpha & 1
 \end{array}\right|\)
 = 1(1 – cos2γ) – cos α (cos α – cos β cos γ) + cos β (cos α cos γ – cos β)
 = 1 – cos2γ – cos2α + cos α cos β cos γ + cos α cos β cos γ – cos2β
 = 1 – cos2γ – cos2α – cos2β + 2 cos α cos β cos γ
 ∆2 = \(\left|\begin{array}{ccc}
 0 & \cos \alpha & \cos \beta \\
 \cos \alpha & 0 & \cos \gamma \\
 \cos \beta & \cos \gamma & 0
 \end{array}\right|\)
 = 0(0 – cos2γ) – cos α (0 – cos γ cos β) + cos β (cos α cos γ – 0)
 = cos α cos β cos γ + cos α cos β cos γ
 = 2 cos α cos β cos γ
 Given ∆1 = ∆2
 1 – cos2α – cos2β – cos2γ + 2 cos α cos β cos γ = 2 cos α cos β cos γ
 1 – cos2α – cos2β – cos2γ = 0
 1 = cos2α + cos2β + cos2γ
![]()
III.
Question 1.
 Show that \(\left|\begin{array}{ccc}
 \mathbf{a}+\mathbf{b}+2 \mathbf{c} & \mathbf{a} & \mathbf{b} \\
 \mathbf{c} & \mathbf{b}+\mathbf{c}+\mathbf{2} \mathbf{a} & \mathbf{b} \\
 \mathbf{c} & \mathbf{a} & \mathbf{c}+\mathbf{a}+\mathbf{2} \mathbf{b}
 \end{array}\right|\) = 2(a + b + c)3
 Solution:
 
Question 2.
 Show that \(\left|\begin{array}{lll}
 a & b & c \\
 b & c & a \\
 c & a & b
 \end{array}\right|^{2}\) = \(\left|\begin{array}{ccc}
 2 b c-a^{2} & c^{2} & b^{2} \\
 c^{2} & 2 a c-b^{2} & a^{2} \\
 b^{2} & a^{2} & 2 a b-c^{2}
 \end{array}\right|\) = (a3 + b3 + c3 – 3abc)2
 Solution:
 
 
Question 3.
 Show that \(\left|\begin{array}{ccc}
 a^{2}+2 a & 2 a+1 & 1 \\
 2 a+1 & a+2 & 1 \\
 3 & 3 & 1
 \end{array}\right|\) = (a – 1)3
 Solution:
 
![]()
Question 4.
 Show that \(\left|\begin{array}{ccc}
 a & b & c \\
 a^{2} & b^{2} & c^{2} \\
 a^{3} & b^{3} & c^{3}
 \end{array}\right|\) = abc(a – b)(b – c)(c – a)
 Solution:
 
Question 5.
 Show that \(\left|\begin{array}{ccc}
 -2 \mathbf{a} & \mathbf{a}+\mathbf{b} & \mathbf{c}+\mathbf{a} \\
 \mathbf{a}+\mathbf{b} & -\mathbf{2} \mathbf{b} & \mathbf{b}+\mathbf{c} \\
 \mathbf{c}+\mathbf{a} & \mathbf{c}+\mathbf{b} & -2 \mathbf{c}
 \end{array}\right|\) = 4(a + b) (b + c) (c + a)
 Solution:
 
 ∴ (c + a) is a factor for ∆
 Similarly a + b, b + c are also factors ∆.
 ∵ ∆ is a third-degree expression in a, b, c.
 ∆ = k(a + b) (b + c) (c + a),
 where k is a non-zero scalar.
 Put a = 1, b = 1, c = 1, then
 \(\left|\begin{array}{ccc}
 -2 & 2 & 2 \\
 2 & -2 & 2 \\
 2 & 2 & -2
 \end{array}\right|\) = k(1 + 1) (1 + 1) (1 + 1)
 ⇒ -2(4 – 4) – 2(-4 – 4) + 2(4 + 4) = 8k
 ⇒ 16 + 16 = 8k
 ⇒ k = 4
 ∴ ∆ = 4(a + b) (b + c) (c + a)
 Hence \(\left|\begin{array}{ccc}
 -2 \mathbf{a} & \mathbf{a}+\mathbf{b} & \mathbf{c}+\mathbf{a} \\
 \mathbf{a}+\mathbf{b} & -\mathbf{2} \mathbf{b} & \mathbf{b}+\mathbf{c} \\
 \mathbf{c}+\mathbf{a} & \mathbf{c}+\mathbf{b} & -2 \mathbf{c}
 \end{array}\right|\) = 4(a + b) (b + c) (c + a)
![]()
Question 6.
 Show that \(\left|\begin{array}{lll}
 \mathbf{a}-\mathbf{b} & \mathbf{b}-\mathbf{c} & \mathbf{c}-\mathbf{a} \\
 \mathbf{b}-\mathbf{c} & \mathbf{c}-\mathbf{a} & \mathbf{a}-\mathbf{b} \\
 \mathbf{c}-\mathbf{a} & \mathbf{a}-\mathbf{b} & \mathbf{b}-\mathbf{c}
 \end{array}\right|\)
 Solution:
 L.H.S = \(\left|\begin{array}{ccc}
 0 & 0 & 0 \\
 b-c & c-a & a-b \\
 c-a & a-b & b-c
 \end{array}\right|\) = 0
 By R1 → R1 + (R2 + R3)
Question 7.
 Show that \(\left|\begin{array}{ccc}
 1 & a & a^{2}-b c \\
 1 & b & b^{2}-c a \\
 1 & c & c^{2}-a b
 \end{array}\right|\) = 0
 Solution:
 
Question 8.
 Show that \(\left|\begin{array}{lll}
 \mathbf{x} & \mathbf{a} & \mathbf{a} \\
 \mathbf{a} & \mathbf{x} & \mathbf{a} \\
 \mathbf{a} & \mathbf{a} & \mathbf{x}
 \end{array}\right|\) = (x + 2a) (x – a)2
 Solution:
 